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» We consider the standard Empirical Risk Minimization setup:
((z) convex

E(©) = ﬂ(X,Y)Nﬁg((I)(X; 0),Y) +R(©) R(O): regularization
E(©) =Ex,y)~p {(P(X;0),Y) . -1
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» We consider the standard Empirical Risk Minimization setup:
((z) convex

E(©) = ﬂ(X,Y)Nﬁg((I)(X; 0),Y) +R(©) R(O): regularization
E(@) — 4:(X,Y)rvP €(¢(X7 @)’Y) ' P = %Zé(xl,yl)

I<L

» Population loss decomposition (aka “fundamental theorem of ML”’):

E(©*) = E(©*) +E(©%) —E(©*) .

training error generalization gap

» Long history of techniques to provably control generalization error
via appropriate regularization.

> Generalization error and optimization are entangled [Bottou &

Bousquet]



MOTIVATION

» However, when®(X'; ©)is a large, deep network, current best
mechanism to control generalization gap has two key
ingredients:

» Stochastic Optimization

> “During training, it adds the sampling noise that corresponds to empirical-
population mismatch” [Léon Bottou].

» Make the model convolutional and very large.

> see e.g. “Understanding Deep Learning Requires Rethinking
Generalization”, [Ch. Zhang et al, ICLR’17].
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» However, when ®(X; ©) is a large, deep network, current best
mechanism to control generalization gap has two key
ingredients:

» Stochastic Optimization
» Make the model convolutional and as large as possible.

» We first address how overparametrization affects the energy
landscapes.

» Goal 1: Study simple topological properties of these landscapes
E(©), E(©)for half-rectified neural networks.

» Goal 2: Estimate simple geometric properties with efficient,
scalable algorithms. Diagnostic tool.



OUTLINE

» Topology of Neural Network Energy Landscapes

» Geometry of Neural Network Energy Landscapes

(a) without skip connections (b) with skip connections

[Lietal.’17]
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» Models from Statistical physics have been considered as

possible approximations [Dauphin et al.’14, Choromanska et
al.’15, Segun et al.’15]

» Tensor factorization models capture some of the non

convexity essence [Anandukar et al’15, Cohen et al. ’15,
Haeftele et al.’15]
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PRIOR RELATED WORK

» Models from Statistical physics have been considered as possible
approximations [Dauphin et al.’14, Choromanska et al.’15, Segun et al.”15]

> Tensor factorization models capture some of the non convexity essence
Anandukar et al’15, Cohen et al. ’15, Haeffele et al.’15]

» [Shafran and Shamir,’15] studies bassins of attraction in neural networks in
the overparametrized regime.

» [Soudry’16, Song et al’16] study Empirical Risk Minimization in two-layer
ReLU networks, also in the over-parametrized regime.

» [Tian’17] studies learning dynamics in a gaussian generative setting.

» [Chaudhari et al’17]: Studies local smoothing of energy landscape using the
local entropy method from statistical physics.

» [Pennington & Bahri’17]: Hessian Analysis using Random Matrix Th.

» [Soltanolkotabi, Javanmard & Lee’17]: layer-wise quadratic NNs.



NON-CONVEXITY = NOT OPTIMIZABLE

» We can perturb any convex function in such a way it is no
longer convex, but such that gradient descent still converges.

» E.g. quasi-convex functions.



NON-CONVEXITY = NOT OPTIMIZABLE

» We can perturb any convex function in such a way it is no
longer convex, but such that gradient descent still converges.

» E.g. quasi-convex functions.

» In particular, deep models have internal symmetries.

F(0) = F(g.0) , g € G compact.



ANALYSIS OF NON-CONVEX LOSS SURFACES

> Given loss E(0) ,0 € R? | we consider its representation in
terms of level sets:

> ' "

o0 S |
E(0) =/ 1(0 € Q,)du , Q, ={y eR?; E(y) <u} -‘r‘.
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ANALYSIS OF NON-CONVEX LOSS SURFACES

> Given loss E(0) ,0 € R? | we consider its representation in
terms of level sets:

E(@):/Oool(HEQu)du, Q. ={yeR?; E(y) <u}

> A first notion we address is about the topology of the level (1,
sets {1y,

» In particular, we ask how connected they are, i.e. how many
connected componentsV,, at each energy levelu ?

» Related to presence of poor local minima:

Proposition: If N, = 1 for all u then F
has no poor local minima.

(i.e. no local minima v* s.t. E(y*) > min,, F(y))



LINEAR VS NON-LINEAR DEEP MODELS

» Some authors have considered linear “deep” models as a first
step towards understanding nonlinear deep models:

E(W17°°'7WK) — <l:(X',Y)rvP||VVK'°°°I/v'1)( _YH2 ‘
XeR", YeR™, W, € Rtex"k-1
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» Some authors have considered linear “deep” models as a first
step towards understanding nonlinear deep models:

E(W17°' 7WK) — 4:(X.',Y)NP||VVK’° WIX _YH2 '
XeR", YeR™, W, € Rt+*"-1

Theorem: [Kawaguchi’16] If ¥ = E(X X)) and E(XY?)
are full-rank and X has distinct eigenvalues, then E(O)
has no poor local minima.

e studying critical points.

e later generalized in [Hardt & Ma’16, Lu & Kawaguchi’17]



LINEAR VS NON-LINEAR DEEP MODELS

Proposition: [BF’16]
1. If np > min(n,m), 0 < k < K, then N,, =1 for all w.

2. (2-layer case, ridge regression)
E(Wi, W2) = Ex y)~p[[Woa W1 X = Y|[* + A([[WA [ + [|[W2]]%)

satisfies N, = 1V u if ny > min(n, m).

» We pay extra redundancy price to get simple topology.



LINEAR VS NON-LINEAR DEEP MODELS

Proposition: [BF’16]
1. If np > min(n,m), 0 < k < K, then N,, =1 for all w.

2. (2-layer case, ridge regression)
E(Wi, W2) = Ex y)~p[[Woa W1 X = Y|[* + A([[WA [ + [|[W2]]%)

satisfies N, = 1V u if ny > min(n, m).

» We pay extra redundancy price to get simple topology.

» This simple topology is an “artifact” of the linearity of the

network:
Proposition: [BF’16] For any architecture (choice of

internal dimensions), there exists a distribution
P x yy such that N, > 1 in the ReLU p(2) = max(0, z) case.



PROOF SKETCH

1
Given @4 — (WA, ... WA) and ©8 — (WB, ..., WE),

we construct a path ( ) that connects ©4 with ©F
st E(y(t)) < maX(E(@A),E(@B))-




PROOF SKETCH

» Goal:

Given ©4 = (W{,..., W) and ©8 = (WE, ... . WE),
we construct a path ~y(¢) that connects ©4 with 68
st E(v(t)) < max(E(04), E(675)).

» Main idea:
. Induction on K.

. Lift the parameter space to W = W1 Wsy: the problem is convex = there
exists a (linear) path 7(¢) that connects ©“ and ©5.

. Write the path in terms of original coordinates by factorizing ~(t).

» Simple fact:
If My, My € R™™ "™ with n’ > n,
then there exists a path t: [0, 1] — ~(¢)
with ’7(0) — M(), "}/(1) — M1 and
My, My € span(~(t)) for all t € (0,1).
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instead of simply no poor-local minima?
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» How much extra redundancy are we paying to achieve V,, = 1
instead of simply no poor-local minima?
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(Wi, Wa, .. Wg) ~ (Wy,...,Wk) < Wi = UW UL, |, Up € GL(R™X ™) |
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» How much extra redundancy are we paying to achieve N, = 1
instead of simply no poor-local minima?

> In the multilinear case, we don’t need My > min(n,m)

(Wi, Wa, .. Wg) ~ (Wy,...,Wk) < Wi = UW UL, |, Up € GL(R™X ™) |

» We do the same analysis in the quotient space defined by the
equivalence relationship .

Theorem [LBB’17]: The Multilinear regression
L x.y)~pr||Wk ...W1X — Y| has no poor local minima.

» Construct paths on the Grassmanian manifold of linear subspaces

> Generalizes best known results for multilinear case (no assumptions
on covariance).



BETWEEN LINEAR AND RELU: POLYNOMIAL NETS

> Quadratic nonlinearities p(z) = z“are a simple extension of
the linear case, by lifting or “kernelizing”:
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. . . 2 . .
» Quadratic nonlinearitiesp(2) = z“are a simple extension of
the linear case, by lifting or “kernelizing”:

p(Wzx)=Aw X , X = zr!l | Ay = (Wng)kSM .

» Level sets are connected with sufficient overparametrisation:

Proposition: If M, > IN2" VY < K , then the landscape of K-layer
quadratic network is simple: N, =1 V .
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. . y 2 . .
» Quadratic nonlinearities p(2) = z“are a simple extension of the
linear case, by lifting or “kernelizing”:

o(Wz)=AwX , X =z’ |, Ay = (Wng)kgM .

» Level sets are connected with sufficient overparametrisation:

Proposition: If M, > IN2" VY < K , then the landscape of K-layer
quadratic network is simple: N, =1 V .

» No poor local minima with much better bounds in the scalar
output two-layer case:
Theorem [LBB’17]: The two-layer quadratic network optimization
LU W) =Exy)~p|lUWX)?—Y|? has no poor local minima if
M > 2N.




ASYMPTOTIC CONNECTEDNESS OF RELU

» Good behavior is recovered with nonlinear ReLU networks,
provided they are sufficiently overparametrized:

» Setup: two-layer ReLU network:
O(X;0)=Wop(W1X), p(z) = max(0, z).W; € R™"*" Wy € R™
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» Good behavior is recovered with nonlinear ReLU networks,
provided they are sufficiently overparametrized:

» Setup: two-layer ReLU network:
P(X;0)=Wop(W1X), p(z) = max(0, z).W; € R™"*" Wy € R™
Theorem [BF’16]: For any 64,07 ¢ R™*" R™,
with E(©1451) <\, there exists path ()
from ©4 and ©F such that
V¢, E(y(t)) < max(\,e) and € ~ m .
» QOverparametrisation “wipes-out” local minima (and group
symmetries).

» The bound is cursed by dimensionality, ie exponential inn .

» Result is based on local linearization of the ReLU kernel (hence
exponential price).



KERNELS ARE BACK?

@(x; @) — Wkp(Wk_l c . ,O(WlX))) ] @ — (Wl, “ . Wk) .

» The underlying technique we described consists in
“convexifying” the problem, by mapping neural parameters ©

to canonical parametersg = A(©):

¢(X;0) = (V(X), A(©)) .
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CI)(CE; @) — Wkp(Wk_l “ . ,O(WlX))) ] @ — (Wl, c . Wk) ]

» The underlying technique we described consists in
“convexifying” the problem, by mapping neural parameters @

to canonical parameters B = A(©)
(X;0) = (¥(X),AO)) .

Corollary: [BBV’17] If dim{A(w),w € R"} = ¢ < o
and M > 2q, then E(W,U) = E|Up(WX) —Y|?,
W € RM*N has no poor local minima if M > 2q.

» This includes Empirical Risk Minimization (since RKHS is only
queried on finite # of datapoints).

> See [Bietti&Mairal’17,Zhang et al’17, Bach’17] for related work.



PARAMETRIC VS MANIFOLD OPTIMIZATION

» This suggests thinking about the problem in the functional
space generated by the model:

Fo ={p:R" = R";p(x) = &(x;0) for some O} .
min o — g«
° g« . x — E(Y|x)
(f9)p = E{f(X)g(X)} .




PARAMETRIC VS MANIFOLD OPTIMIZATION

» This suggests thinking about the problem in the functional
space generated by the model:

Fo ={p:R" = R";p(x) = &(x;0) for some O} .
min o — g«
° g« . x — E(Y|x)
(f9)p = E{f(X)g(X)} .

Fa

» Sufficient conditions for success so far:
» J & convex and O sufficiently large so that we can move freely within.

» What happens when the model is not overparametrised?



FROM SIMPLE LANDSCAPES TO ENERGY BARRIER

» The energy landscape of several prototypical models in
statistical physics exhibit a so-called energy barrier, e.g.

spherical spin glasses:

-0.01 -

—0.02- -7

FIGURE 1. The functions Oy, for p =3 and k = 0 (solid), k = 1 (dashed),
k = 2 (dash-dotted), k = 10, £ = 100 (both dotted). All these functions

agree for u > —FE .

[Auffinger, Ben Arous
Cerny,’11]



FROM SIMPLE LANDSCAPES TO ENERGY BARRIER?

» Does a similar macroscopic picture arise in our setting?

> Given p(z) homogeneous, assume
> p{w, X)) = (Ay, (X)) , with dim((X)) = f(N) .

» Define

B(M,N) = inf inf Sup E|Up(WPsX + Z) = Y||?
Sidim()=f~HM) g eR™M  gz| <N - FHM),

W e RM*S 71 (M) PsZ =0
> Best loss obtained by first projecting the data onto the best possible
subspace of dimension f~!(M)and adding bounded noise in the

complement.

> B(M, N) decreases with M and ﬁ(f(N),N) = II}I%AI/’IE(M W)
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» Does a similar macroscopic picture arise in our setting?

> Given p(z) homogeneous, assume
e (0, X)) = (A, (X)) ,with dim((X)) = f(N)

» Define

B(M,N) = inf inf sup E|Up(WPsX + Z) = Y||?
Sidim(H=f~HM) g e R™M  gz| <N - FHM),

W e RM*S 71 (M) PsZ =0
> Best loss obtained by first projecting the data onto the best possible
subspace of dimension f~!(M)and adding bounded noise in the

complement.

> 5(M,N) decreases with M and B(f(N),N) = II}I%AI}E(Ua W)

Conjecture [LBB’18]: The loss L(U, W) = E|Up(WX) — Y||?
has no poor local minima above the energy barrier (M, N).



FROM TOPOLOGY TO GEOMETRY

» The next question we are interested in is conditioning for
descent.

» Even if level sets are connected, how easy it is to navigate

through them?

» How “large” and regular are they?

easy to move from one energy hard to move from one energy
level to lower one level to lower one



FROM TOPOLOGY TO GEOMETRY

» The next question we are interested in is conditioning for
descent.

» Even if level sets are connected, how easy it is to navigate
through them?

» We estimate level set geodesics and measure their length.

6)A

HB

easy to move from one energy hard to move from one energy
level to lower one level to lower one



FINDING CONNECTED COMPONENTS

> They are in the same connected component of ), ift
there is a path y(t), v(0) = 61,~(1) = 65 such that
vie(0,1), E(y(t) < wuo -

» Moreover, we penalize the length of the path:

Ve (0.1). B(v(t) <u and /M(t)Hdt <M.
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> They are in the same connected component of ), ift
there is a path y(t), v(0) = 61,~(1) = 65 such that
vie(0,1), E(y(t) < wuo -

» Moreover, we penalize the length of the path:
Ve O.1). BO(®) Suo and [ [5(2)dt< M

»Dynamic programming approach:
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FINDING CONNECTED COMPONENTS

> Supposet1, 02 are such that E(81) = E(02) = ug

> They are in the same connected component of ), ift
there is a path y(t), v(0) = 61,~(1) = 65 such that
vie(0,1), E(y(t) < wuo -

» Moreover, we penalize the length of the path:

Ve (0.1). B(v(t) <u and /M(t)Hdt <M.

»Dynamic programming approach: H
01 + 05
0, = 5 91 @ & e 93 '
& 3
. 3
f3 =arg  min |60 — 0., -

oeH; E(0)<ug 0-0



Normalized Length

NUMERICAL EXPERIMENTS
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» Compute length of geodesic in {2, 0btained by the algorithm
and normalize it by the Euclidean distance. Measure of
curviness of level sets.

3.0+ T T T T T T 1.10
2.5 1.08r
<
0
5 1.06
2.0 -
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L, % error on test set

cubic polynomial CNN/MNIST



Normalized Length

NUMERICAL EXPERIMENTS
.................................................. PP

» Compute length of geodesicin  obtained by the algorithm
and normalize it by the Euclidean distance. Measure of
curviness of level sets.

2.0 2.0
1.8} 1.8
=
0
1.6} g 1.6}
—
o)
S
1.4} ‘g 1.4k
@)
Z
12 L.2r [/\\
®
Lo | | ! ! f ? ? | 1.0 | ! | I | | |
10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800

% error on test set Perplexity on test set

CNN/CIFAR-T0 Lo TM/Penn

900



ANALYSIS AND PERSPECTIVES

> #of components does not increase: no detected poor local minima
so far when using typical datasets and typical architectures (at
energy levels explored by SGD).

> Level sets become more irregular as energy decreases.

> Presence of “energy barrier”? extend to truncated Taylor?

» Kernels are back? CNN RKHS

» Open: “sweet spot” between overparametrisation and overfitting?

» Open: Role of Stochastic Optimization in this story?



THANKS!



