Large Graph Limits of Learning Algorithms

Matt Dunlop, Xiyang (Michael) Luo

Computing and Mathematical Sciences, Caltech Department of Mathematics, UCLA

Andrea Bertozzi (UCLA), Xiyang Luo (UCLA) Andrew Stuart (Caltech) and Kostas Zygalakis (Edinburgh) JUQ, to appear

*

Matt Dunlop (Caltech), Dejan Slepčev (CMU) Andrew Stuart (Caltech) and Matt Thorpe (Cambridge)

In preparation

ī

Talk Overview

Learning and Inverse Problems

Graph Laplacian

Inverse Problem Formulation

Large Graph Limits

Probability

Conclusions

Talk Overview

Learning and Inverse Problems

Graph Laplacian

Inverse Problem Formulation

Large Graph Limits

Probability

Conclusions

Regression

- Let $D \subset \mathbb{R}^d$ be a bounded open set.
- Let $D' \subset D$.

Ill-Posed Inverse Problem

Find $u: D \mapsto \mathbb{R}$ given

$$y(x) = u(x), \quad x \in D'.$$

• Strong prior information needed.

Classification

- Let $D \subset \mathbb{R}^d$ be a bounded open set.
- Let $D' \subset D$.

Ill-Posed Inverse Problem

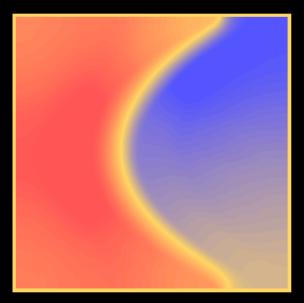
Find $u: D \mapsto \mathbb{R}$ given

$$y(x) = \operatorname{sign}(u(x)), \quad x \in D'.$$

• Even stronger prior information needed.

y = sign(u). Red= 1. Blue= -1. Yellow: no information.

Reconstruction of the function u on D



Talk Overview

Learning and Inverse Problems

Graph Laplacian

Inverse Problem Formulation

Large Graph Limits

Probability

Conclusions

Graph Laplacian

Graph Laplacian:

- Similarity graph *G* with *n* vertices $Z = \{1, ..., n\}$.
- Weighted adjacency matrix $W = \{w_{j,k}\}, (w_{j,k} = \eta_{\varepsilon}(x_j x_k))$.
- Diagonal $D = \text{diag}\{d_{jj}\}, d_{jj} = \sum_{k \in \mathbb{Z}} w_{j,k}.$
- $L = s_n(D W)$ (unnormalized).

Spectral Properties:

- *L* is positive semi-definite: $\langle u, Lu \rangle_{\mathbb{R}^n} \propto \sum_{j \sim k} w_{j,k} |u_j u_k|^2$.
- $Lq_j = \lambda_j q_j;$
- Fully connected $\Rightarrow \lambda_1 > \lambda_0 = 0$. Fiedler Vector: q_1 .

Example: Voting Records

U.S. House of Representatives 1984, 16 key votes. For each congress representative we have an associated feature vector $x_i \in \mathbb{R}^{16}$ such as

$$x_j = (1, -1, 0, \cdots, 1)^T;$$

1 is "yes", -1 is "no" and 0 abstain/no-show. Here d = 16 and n = 435.

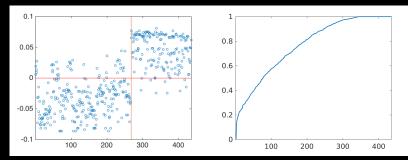


Figure: Strong Prior Information: Fiedler Vector and Spectrum (Normalized)

Example of Underlying Gaussian (Voting Records)

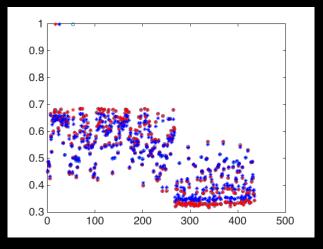


Figure: Two point correlation of sign(u) for 3 Democrats

Talk Overview

Learning and Inverse Problems

Graph Laplacian

Inverse Problem Formulation

Large Graph Limits

Probability

Conclusions

Problem Statement (Optimization)

Semi-Supervised Learning

• Input:

- Unlabelled data $\{x_j \in \mathbb{R}^d, j \in Z := \{1, \dots, n\}\};$
- Labelled data $\{y_j \in \{\pm 1\}, j \in Z' \subset Z\}.$

• Output:

• Labels $\{y_j \in \{\pm 1\}, j \in Z\}$.

Classification based on sign(u), *u* the optimizer of:

$$J(u; y) = \frac{1}{2} \langle u, C^{-1}u \rangle_{\mathbb{R}^n} + \Phi(u; y).$$

• u is an \mathbb{R} -valued function on the graph nodes.

•
$$C = (L + \tau^2 I)^{-\alpha} \left(\text{from unlabelled data: } w_{j,k} = \eta_{\varepsilon}(x_j - x_k). \right)$$

• $\Phi(u; y)$ links real-valued *u* to the binary-valued labels *y*.

Problem Statement (Bayesian Formulation)

Semi-Supervised Learning

• Input:

- Unlabelled data $\{x_j \in \mathbb{R}^d, j \in Z := \{1, \dots, n\}\};$ prior
- Labelled data $\{y_j \in \{\pm 1\}, j \in Z' \subseteq Z\}$. likelihood

• Output:

• Labels $\{y_j \in \{\pm 1\}, j \in Z\}$. posterior

Connection between probability and optimization:

$$J^{(n)}(u; y) = \frac{1}{2} \langle u, C^{-1}u \rangle_{\mathbb{R}^n} + \Phi^{(n)}(u; y).$$

$$\begin{split} \mathbb{P}(u|y) &\propto \exp\left(-J^{(n)}(u;y)\right) \\ &\propto \exp\left(-\Phi^{(n)}(u;y)\right) \times \mathsf{N}(0,C) \\ &\propto \mathbb{P}(y|u) \times \mathbb{P}(u). \end{split}$$

Probit

Rasmussen and Williams, 2006. (MIT Press)

Bertozzi, Luo, Stuart and Zygalakis, 2017. (SIAM-JUQ)

Probit Model

$$\mathsf{J}_{\mathsf{p}}^{(n)}(u;y) = \frac{1}{2} \langle u, C^{-1}u \rangle_{\mathbb{R}^n} + \Phi_{\mathsf{p}}^{(n)}(u;y).$$

Here

$$C = (L + \tau^2 I)^{-\alpha},$$

$$\Phi_{\mathrm{p}}^{(n)}(u; y) := -\sum_{j \in Z'} \log(\Psi(y_j u_j ; \gamma))$$

where Ψ is the smoothed Heaviside function:

$$\Psi(\nu;\gamma) = \frac{1}{\sqrt{2\pi\gamma^2}} \int_{-\infty}^{\nu} \exp\left(-t^2/2\gamma^2\right) \mathrm{d}t.$$

Level Set

Le

Iglesias, Lu and Stuart, 2016. (IFB)

$$\mathsf{J}_{\mathrm{ls}}^{(n)}(u;y) = \frac{1}{2} \langle u, C^{-1}u \rangle_{\mathbb{R}^n} + \Phi_{\mathrm{ls}}^{(n)}(u;y).$$

Here

$$C = (L + \tau^2 I)^{-\alpha},$$

and

$$\Phi_{\rm ls}^{(n)}(u;y) := \frac{1}{2\gamma^2} \sum_{j \in Z'} |y_j - \operatorname{sign}(u_j)|^2.$$

Sampling Algorithm

Cotter, Roberts, Stuart, White, 2013. (Statis. Sci.)

The preconditioned Crank-Nicolson (pCN) Method

- 1: Define: $\alpha(u, v) = \min\{1, \exp(\Phi(u) \Phi(v))\}$. $C = (L + \tau^2 I)^{-\alpha}$
- 2: while k < M do
- 3: $v^{(k)} = \sqrt{1 \beta^2} u^{(k)} + \beta \xi^{(k)}$, where $\xi^{(k)} \sim \mathbb{N}(0, C)$.
- 4: Calculate acceptance probability $\alpha(u^{(k)}, v^{(k)})$.
- 5: Accept: $u^{(k+1)} = v^{(k)}$ with probability $\alpha(u^{(k)}, v^{(k)})$, otherwise
- 6: Reject: $u^{(k+1)} = u^{(k)}$.

7: end while

Bertozzi, Luo, Stuart, 2018. (In preparation.)

$$\mathbb{E}(\alpha(u,v)) = O(Z_0^2), \quad Z_0 = \mu(\{S(u(j)) = y(j) | j \in Z'\})$$

Example of UQ (Hyperspectral)

Here d = 129 and $N \approx 3 \times 10^5$. Use Nyström .

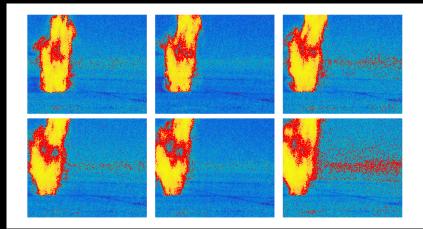


Figure: Spectral Approximation. Uncertain classification in red.

Talk Overview

Learning and Inverse Problems

Graph Laplacian

Inverse Problem Formulation

Large Graph Limits

Probability

Conclusions

Limit Theorem for the Dirichlet Energy

Garcia-Trillos and Slepčev, 2016. (ACHA)

Unlabelled data $\{x_j\}$ sampled i.i.d. from density ρ supported on bounded $D \subset \mathbb{R}^d$. Let

$$\mathcal{L}u = -\frac{1}{
ho} \nabla \cdot \left(
ho^2 \nabla u
ight) \quad x \in D, \quad \frac{\partial u}{\partial n} = 0, \quad x \in \partial D.$$

Theorem 2

Let $s_n = \frac{2}{C(\eta)n\varepsilon^2}$. Then under connectivity conditions on $\varepsilon = \varepsilon(n)$ in η_{ε} , the scaled Dirichlet energy Γ - converges in the TL^2 metric:

$$\frac{1}{n}\langle u,Lu\rangle_{\mathbb{R}^n}\to \langle u,\mathcal{L}u\rangle_{L^2_\rho} \quad \text{as} \quad n\to\infty.$$

Limit Theorem for Probit

Dunlop, Slepčev, Stuart and Thorpe, In preparation, 2018.

 D^{\pm} two disjoint bounded subsets of D, define $D' = D^{+} \cup D^{-}$ and

$$y(x) = +1, x \in D^+; y(x) = -1, x \in D^-$$

Assume that $\#D_n/n \to \text{const.}$ as $n \to \infty$. For $\alpha > 0$, define $\mathcal{C} = (\mathcal{L} + \tau^2 I)^{-\alpha}$. Recall $\mathcal{L}u = -\frac{1}{\rho} \nabla \cdot (\rho^2 \nabla u)$, and no flux boundary conditions.

Theorem 3

Let $s_n = \frac{2}{C(\eta)n\varepsilon^2}$. Then under connectivity conditions on $\varepsilon = \varepsilon(n)$ the scaled probit objective function Γ -converges in the TL^2 metric:

$$\frac{1}{n} \mathsf{J}_{\mathsf{p}}^{(n)}(u; y) \to \mathsf{J}_{\mathsf{p}}(u; y) \quad \text{as} \quad n \to \infty,$$
$$\mathsf{J}_{\mathsf{p}}(u; y) = \frac{1}{2} \langle u, \mathcal{C}^{-1}u \rangle_{L^{2}_{\rho}} + \Phi_{\mathsf{p}}(u; y),$$
$$\Phi_{\mathsf{p}}(u; y) := -\int_{D'} \log \Big(\Psi(y(x) u(x) ; \gamma) \Big) \rho(x) dx$$

Limit Theorem for Probit

Dunlop, Slepčev, Stuart and Thorpe, In preparation, 2018.

Assume now that $\#D_n$ is fixed as $n \to \infty$.

Theorem 4

Let
$$s_n = \frac{2}{C(\eta)n\varepsilon^2}$$
 with $\varepsilon = \varepsilon(n, \alpha)$. Suppose that either
• $\alpha > d/2$ and $\varepsilon(n, \alpha)n^{\frac{1}{2\alpha}} \to \infty$; or
• $\alpha < d/2$.

Then with probability one, sequences of minimizers of $J_p^{(n)}$ converge to zero in the TL^2 metric.

Talk Overview

Learning and Inverse Problems

Graph Laplacian

Inverse Problem Formulation

Large Graph Limits

Probability

Conclusions

Example (PDE Two Moons – Unlabelled Data)

Figure: Sampling density ρ of unlabelled data.

Example (PDE Two Moons – Label Data)

Figure: Labelled Data.

Example (PDE Two Moons – Fiedler Vector of \mathcal{L})

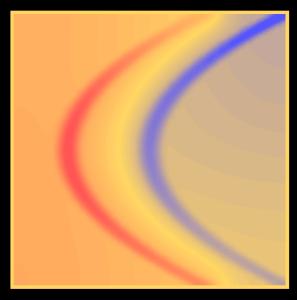


Figure: Fiedler Vector.

Example (PDE Two Moons – Posterior Labelling)

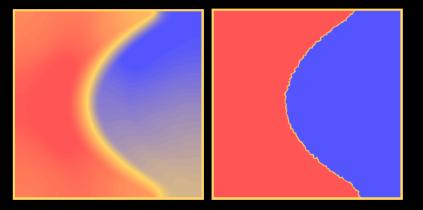


Figure: Posterior mode of u and sign(u).

Connecting Probit, Level Set and Regression

Dunlop, Slepčev, Stuart and Thorpe, In preparation, 2017.

Probit and Level Set Probabilistic Models

- Prior: Gaussian $\mathbb{P}(du) = \mathsf{N}(0, \mathcal{C})$.
- Probit Posterior: $\mathbb{P}_{\gamma}(\mathrm{d} u|y) \propto \exp(-\Phi_{\mathrm{p}}(u;y))\mathbb{P}(\mathrm{d} u).$
- Level Set Posterior: $\mathbb{P}_{\gamma}(du|y) \propto \exp(-\Phi_{ls}(u;y))\mathbb{P}(du)$.

Theorem 4

Let
$$\alpha > \frac{d}{2}$$
. We have $\mathbb{P}_{\gamma}(u|y) \Rightarrow \mathbb{P}(u|y)$ as $\gamma \to 0$ where
 $\mathbb{P}(\mathrm{d}u|y) \propto \mathbf{1}_{A}(u)\mathbb{P}(\mathrm{d}u), \quad \mathbb{P}(\mathrm{d}u) = \mathsf{N}(0, \mathcal{C})$
 $A = \{u : \mathrm{sign}(u(x)) = y(x), \quad x \in D'\}.$

Compare with regression (Zhu, Ghahramani, Lafferty 2003, (ICML):)

$$\mathbf{A} \mapsto A_0 = \{ u : u(x) = y(x), \quad x \in D' \}.$$

Example (MNIST: Human-in-the-loop labelling)

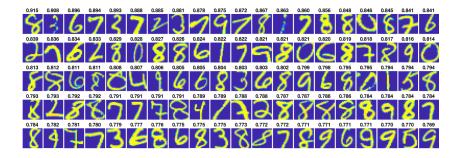


Figure: 100 most uncertain digits, 200 labels. Mean uncertainty: 14.0%

Example (MNIST)

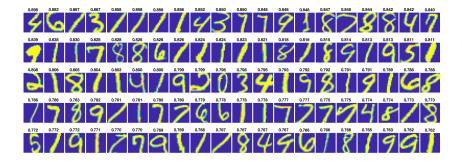


Figure: 100 most uncertain digits, 300 labels. Mean uncertainty: 10.3%

Example (MNIST)

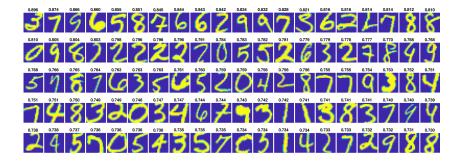


Figure: 100 most uncertain digits, 400 labels. Mean uncertainty: 8.1%

Talk Overview

Learning and Inverse Problems

Graph Laplacian

Inverse Problem Formulation

Large Graph Limits

Probability

Conclusions

Summary: Graph Based Learning

- Single optimization framework for classification algorithms.
- Single Bayesian framework for classification algorithms.
- Large graph limit reveals novel inverse problem structure.
- Links between probit, level set and regression.
- Gaussian measure conditioned on its sign.
- UQ for human-in-the-loop learning.
- Efficient MCMC algorithms.

References

X Zhu, Z Ghahramani, J Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, ICML, 2003. Harmonic Functions.

C Rasmussen and C Williams, Gaussian processes for machine learning, MIT Press, 2006. Probit.

- AL Bertozzi, X Luo, AM Stuart Computational Cost of Sampling Methods for Semi-Supervised Learning on Large Graphs, In Preparation, 2018.
- MA Iglesias, Y Lu, AM Stuart, Bayesian level set method for geometric inverse problems, Interfaces and Free Boundaries, 2016. Level Set.
 - AL Bertozzi, M Luo, AM Stuart and K Zygalakis, Uncertainty quantification in the classification of high dimensional data, https://arxiv.org/abs/1703.08816, 2017. Probit on a graph.
 - N Garcia-Trillos and D Slepčev, A variational approach to the consistency of spectral clustering, ACHA, 2017.
 - M Dunlop, D Slepčev, AM Stuart and M Thorpe, Large data and zero noise limits of graph based semi-supervised learning algorithms, In preparation, 2018.
 - N Garcia-Trillos, D Sanz-Alonso, Continuum Limit of Posteriors in Graph Bayesian Inverse Problems, https://arxiv.org/abs/1706.07193, 2017.

pCN

$$\alpha(u,v) = \min\{1, \exp(\Phi(u) - \Phi(v))\}.$$

The preconditioned Crank-Nicolson (pCN) Method

- 1: while k < M do 2: $v^{(k)} = \sqrt{1 - \beta^2} u^{(k)} + \beta \xi^{(k)}$, where $\xi^{(k)} \sim N(0, C)$. 3: Accept: $u^{(k+1)} = v^{(k)}$ with probability $\alpha(u^{(k)}, v^{(k)})$, otherwise 4: Reject: $u^{(k+1)} = u^{(k)}$.
- 5: end while

Why pCN?

- For given acceptance probability, β is independent of N = |Z|.
- Can exploit approximation of graph Laplacian (Nyström) and ...

Example of UQ (Two Moons)

Recall that $d = 10^2$, $N = \underline{2 \times 10^3}$.

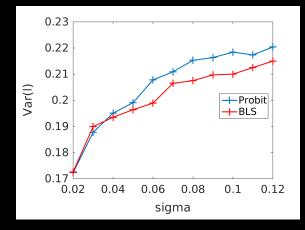


Figure: Average Label Posterior Variance vs σ , feature vector noise.

Example of UQ (MNIST)

Here d = 784 and N = 4000.

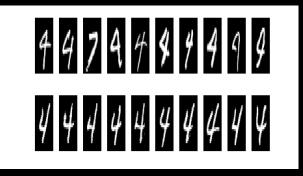


Figure: "Low confidence" vs "High confidence" nodes in MNIST49 graph.

Saturation of Spectra in Applications

Karhunen-Loeve – if $Lq_j = \lambda_j q_j$ then $u \sim N(0, C)$ is:

$$u = c^{\frac{1}{2}} \sum_{j=1}^{N-1} (\lambda_j + \tau^2)^{-\frac{\alpha}{2}} q_j z_j, z_j \sim \mathsf{N}(0, 1) \quad \text{i.i.d.}$$
(1)

- Spectrum of graph Laplacian often saturates as $j \rightarrow N 1$.
- Spectral Projection $\iff \lambda_k := \infty, k \ge \ell.$
- Spectral Approximation: set λ_k to some $\overline{\lambda} < \infty$.

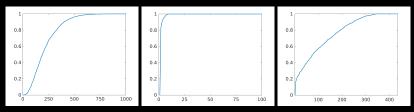


Figure: Two Moons, Hyperspectral, Voting Records.

Example of UQ (Voting)

Recall that d = 16 and N = 435.

Mean Absolute Error: Projection: 0.1577, Approximation: 0.0261.

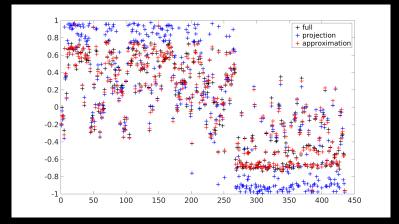


Figure: Mean Label Posterior. Compare Full (black), Spectral Approximation (red) and Spectral Projection (blue).

Example of UQ (Hyperspectral)

Here d = 129 and $N \approx 3 \times 10^5$. Use Nyström .

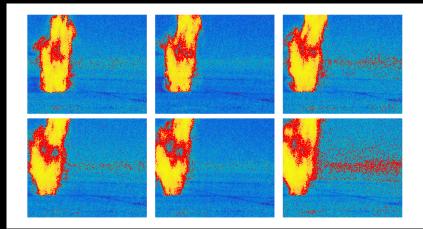


Figure: Spectral Approximation. Uncertain classification in red.