
Large Graph Limits of Learning Algorithms

Matt Dunlop, Xiyang (Michael) Luo

Computing and Mathematical Sciences, Caltech
Department of Mathematics, UCLA

Andrea Bertozzi (UCLA), Xiyang Luo (UCLA)
Andrew Stuart (Caltech) and Kostas Zygalakis (Edinburgh)

JUQ, to appear
?

Matt Dunlop (Caltech), Dejan Slepčev (CMU)
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Regression

Let D ⊂ Rd be a bounded open set.

Let D′ ⊂ D.

Ill-Posed Inverse Problem

Find u : D 7→ R given

y(x) = u(x), x ∈ D′.

Strong prior information needed.
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Classification

Let D ⊂ Rd be a bounded open set.

Let D′ ⊂ D.

Ill-Posed Inverse Problem

Find u : D 7→ R given

y(x) = sign
(
u(x)

)
, x ∈ D′.

Even stronger prior information needed.
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y = sign(u). Red= 1. Blue= −1. Yellow: no information.
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Reconstruction of the function u on D
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Graph Laplacian

Graph Laplacian:

Similarity graph G with n vertices Z = {1, . . . , n}.

Weighted adjacency matrix W = {wj,k},
(

wj,k = ηε(xj − xk).
)

Diagonal D = diag{djj}, djj =
∑

k∈Z wj,k.

L = sn(D−W) (unnormalized).

Spectral Properties:

L is positive semi-definite: 〈u,Lu〉Rn ∝
∑

j∼k wj,k|uj − uk|2.

Lqj = λjqj;

Fully connected⇒ λ1 > λ0 = 0. Fiedler Vector: q1.
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Example: Voting Records

U.S. House of Representatives 1984, 16 key votes. For each congress
representative we have an associated feature vector xj ∈ R16 such as

xj = (1,−1, 0, · · · , 1)T ;

1 is “yes”, −1 is “no” and 0 abstain/no-show. Here d = 16 and n = 435.

Figure: Strong Prior Information: Fiedler Vector and Spectrum (Normalized)
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Example of Underlying Gaussian (Voting Records)

Figure: Two point correlation of sign(u) for 3 Democrats
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Problem Statement (Optimization)

Semi-Supervised Learning
Input:

Unlabelled data
{

xj ∈ Rd, j ∈ Z := {1, . . . , n}
}

;
Labelled data

{
yj ∈ {±1}, j ∈ Z′ ⊂ Z

}
.

Output:
Labels

{
yj ∈ {±1}, j ∈ Z

}
.

Classification based on sign(u), u the optimizer of:

J(u; y) =
1
2
〈u,C−1u〉Rn + Φ(u; y).

u is an R−valued function on the graph nodes.

C = (L + τ 2I)−α
(

from unlabelled data: wj,k = ηε(xj − xk).
)

Φ(u; y) links real-valued u to the binary-valued labels y.
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Problem Statement (Bayesian Formulation)

Semi-Supervised Learning
Input:

Unlabelled data
{

xj ∈ Rd, j ∈ Z := {1, . . . , n}
}

; prior
Labelled data

{
yj ∈ {±1}, j ∈ Z′ ⊆ Z

}
. likelihood

Output:
Labels

{
yj ∈ {±1}, j ∈ Z

}
. posterior

Connection between probability and optimization:

J(n)(u; y) =
1
2
〈u,C−1u〉Rn + Φ(n)(u; y).

P(u|y) ∝ exp
(
−J(n)(u; y)

)
∝ exp

(
−Φ(n)(u; y)

)
× N(0,C)

∝ P(y|u)× P(u).
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Probit

Rasmussen and Williams, 2006. (MIT Press)

Bertozzi, Luo, Stuart and Zygalakis, 2017. (SIAM-JUQ)

Probit Model

J(n)p (u; y) =
1
2
〈u,C−1u〉Rn + Φ

(n)
p (u; y).

Here
C = (L + τ 2I)−α,

Φ
(n)
p (u; y) := −

∑
j∈Z′

log
(
Ψ(yj uj ; γ)

)
where Ψ is the smoothed Heaviside function:

Ψ(v; γ) =
1√

2πγ2

∫ v

−∞
exp

(
− t2/2γ2)dt.
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Level Set

Iglesias, Lu and Stuart, 2016. (IFB)

Level Set Model

J(n)ls (u; y) =
1
2
〈u,C−1u〉Rn + Φ

(n)
ls (u; y).

Here
C = (L + τ 2I)−α,

and
Φ
(n)
ls (u; y) :=

1
2γ2

∑
j∈Z′

∣∣yj − sign
(
uj
)
|2.
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Sampling Algorithm

Cotter, Roberts, Stuart, White, 2013. (Statis. Sci.)

The preconditioned Crank-Nicolson (pCN) Method

1: Define: α(u, v) = min{1, exp(Φ(u)− Φ(v)}. C = (L + τ 2I)−α

2: while k < M do
3: v(k) =

√
1− β2u(k) + βξ(k), where ξ(k) ∼ N(0,C).

4: Calculate acceptance probability α(u(k), v(k)).
5: Accept: u(k+1) = v(k) with probability α(u(k), v(k)), otherwise
6: Reject: u(k+1) = u(k).
7: end while

Bertozzi, Luo, Stuart, 2018. (In preparation.)

E(α(u, v)) = O(Z2
0), Z0 = µ({S(u(j)) = y(j) | j ∈ Z′})

17



Example of UQ (Hyperspectral)

Here d = 129 and N ≈ 3× 105. Use Nyström .

Figure: Spectral Approximation. Uncertain classification in red.
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Limit Theorem for the Dirichlet Energy

Garcia-Trillos and Slepčev, 2016. (ACHA)

Unlabelled data {xj} sampled i.i.d. from density ρ supported on
bounded D ⊂ Rd. Let

Lu = −1
ρ
∇ ·
(
ρ2∇u

)
x ∈ D,

∂u
∂n

= 0, x ∈ ∂D.

Theorem 2
Let sn = 2

C(η)nε2 . Then under connectivity conditions on ε = ε(n) in

ηε, the scaled Dirichlet energy Γ− converges in the TL2 metric:

1
n
〈u,Lu〉Rn → 〈u,Lu〉L2

ρ
as n→∞.
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Limit Theorem for Probit

Dunlop, Slepčev, Stuart and Thorpe, In preparation, 2018.

D± two disjoint bounded subsets of D, define D′ = D+ ∪ D− and

y(x) = +1, x ∈ D+; y(x) = −1, x ∈ D−.

Assume that #Dn/n→ const. as n→∞. For α > 0, define C = (L+ τ 2I)−α.

Recall Lu = − 1
ρ
∇ · (ρ2∇u), and no flux boundary conditions.

Theorem 3
Let sn = 2

C(η)nε2 . Then under connectivity conditions on ε = ε(n) the scaled
probit objective function Γ−converges in the TL2 metric:

1
n

J(n)
p (u; y)→ Jp(u; y) as n→∞,

Jp(u; y) =
1
2
〈
u, C−1u

〉
L2
ρ

+ Φp(u; y),

Φp(u; y) := −
∫

D′
log
(

Ψ(y(x) u(x) ; γ)
)
ρ(x)dx.
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Limit Theorem for Probit

Dunlop, Slepčev, Stuart and Thorpe, In preparation, 2018.

Assume now that #Dn is fixed as n→∞.

Theorem 4
Let sn = 2

C(η)nε2 with ε = ε(n, α). Suppose that either

1 α > d/2 and ε(n, α)n
1

2α →∞; or
2 α < d/2.

Then with probability one, sequences of minimizers of J(n)p converge
to zero in the TL2 metric.
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Example (PDE Two Moons – Unlabelled Data)

Figure: Sampling density ρ of unlabelled data.
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Example (PDE Two Moons – Label Data)

Figure: Labelled Data.
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Example (PDE Two Moons – Fiedler Vector of L)

Figure: Fiedler Vector.
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Example (PDE Two Moons – Posterior Labelling)

Figure: Posterior mode of u and sign(u).
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Connecting Probit, Level Set and Regression

Dunlop, Slepčev, Stuart and Thorpe, In preparation, 2017.

Probit and Level Set Probabilistic Models
Prior: Gaussian P(du) = N(0, C).
Probit Posterior: Pγ(du|y) ∝ exp

(
−Φp(u; y)

)
P(du).

Level Set Posterior: Pγ(du|y) ∝ exp
(
−Φls(u; y)

)
P(du).

Theorem 4
Let α > d

2 . We have Pγ(u|y)⇒ P(u|y) as γ → 0 where

P(du|y) ∝ 1A(u)P(du), P(du) = N(0, C)

A = {u : sign
(
u(x)

)
= y(x), x ∈ D′}.

Compare with regression (Zhu, Ghahramani, Lafferty 2003, (ICML):)

A 7→ A0 = {u : u(x) = y(x), x ∈ D′}.
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Example (MNIST: Human-in-the-loop labelling)

29

Figure: 100 most uncertain digits, 200 labels. Mean uncertainty: 14.0%



Example (MNIST)
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Figure: 100 most uncertain digits, 300 labels. Mean uncertainty: 10.3%



Example (MNIST)
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Figure: 100 most uncertain digits, 400 labels. Mean uncertainty: 8.1%
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Summary: Graph Based Learning

Single optimization framework for classification algorithms.

Single Bayesian framework for classification algorithms.

Large graph limit reveals novel inverse problem structure.

Links between probit, level set and regression.

Gaussian measure conditioned on its sign.

UQ for human-in-the-loop learning.

Efficient MCMC algorithms.
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pCN

α(u, v) = min{1, exp(Φ(u)− Φ(v)}.

The preconditioned Crank-Nicolson (pCN) Method
1: while k < M do
2: v(k) =

√
1− β2u(k) + βξ(k), where ξ(k) ∼ N(0,C).

3: Accept: u(k+1) = v(k) with probability α(u(k), v(k)), otherwise
4: Reject: u(k+1) = u(k).
5: end while

Why pCN?

For given acceptance probability, β is independent of N = |Z|.

Can exploit approximation of graph Laplacian (Nyström) and · · ·
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Example of UQ (Two Moons)

Recall that d = 102,N = 2× 103.

Figure: Average Label Posterior Variance vs σ, feature vector noise.
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Example of UQ (MNIST)

Here d = 784 and N = 4000.

Figure: “Low confidence” vs “High confidence” nodes in MNIST49 graph.
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Saturation of Spectra in Applications

Karhunen-Loeve – if Lqj = λjqj then u ∼ N(0,C) is:

u = c
1
2

N−1∑
j=1

(λj + τ 2)−
α
2 qjzj, zj ∼ N(0, 1) i.i.d. (1)

Spectrum of graph Laplacian often saturates as j→ N − 1.

Spectral Projection ⇐⇒ λk :=∞, k ≥ `.

Spectral Approximation: set λk to some λ̄ <∞.

Figure: Two Moons, Hyperspectral, Voting Records.
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Example of UQ (Voting)

Recall that d = 16 and N = 435.
Mean Absolute Error: Projection: 0.1577, Approximation: 0.0261.

Figure: Mean Label Posterior. Compare Full (black), Spectral
Approximation (red) and Spectral Projection (blue).
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Example of UQ (Hyperspectral)

Here d = 129 and N ≈ 3× 105. Use Nyström .

Figure: Spectral Approximation. Uncertain classification in red.

40


	Learning and Inverse Problems
	Graph Laplacian
	Inverse Problem Formulation
	Large Graph Limits
	Probability
	Conclusions

