
Solving High-dimensional PDEs Using
Deep Learning

Jiequn Han

The Program in Applied & Computational Mathematics,
Princeton University

Joint work with Weinan E and Arnulf Jentzen

Inverse Problems and Machine Learning,
Caltech, February 9, 2018

1 / 32

Outline

1. Introduction

2. Mathematical Formulation

3. Neural Network Approximation

4. Numerical Examples

5. Summary

2 / 32

Table of Contents

1. Introduction

2. Mathematical Formulation

3. Neural Network Approximation

4. Numerical Examples

5. Summary

3 / 32

Well-known Examples of PDEs

• The Schrödinger equation in quantum many-body problem,

i~
∂

∂t
Ψ(t, x) = (−1

2∆ + V)Ψ(t, x).

• The Black-Scholes equation for pricing financial derivatives,

vt + 1
2 Tr

(
σσT(Hessxv)

)
+ r∇v · x− rv = 0.

• The Hamilton-Jacobi-Bellman equation in stochastic control
(dynamic programming),

vt + max
u

{1
2 Tr

(
σσT(Hessxv)

)
+∇v · b+ f

}
= 0.

4 / 32

Curse of Dimensionality

• The dimension of PDEs can be easily large in practice.

Equation Dimension (roughly)

Schrödinger equation # of electrons × 3
Black-Scholes equation # of underlying financial assets

HJB equation the same as the state space

• A key computational challenge is the curse of dimensionality:
the complexity is exponential in dimension d for finite
difference/element method – usually unavailable for d ≥ 4.

• There is a huge gap between PDE modelings and
computational algorithms.

5 / 32

Remarkable Success of Deep Learning

• Machine learning/data analysis also face the same curse of
dimensionality

• In recent years, deep learning has achieved remarkable success

• An old but essential idea: represent functions in a
compositional form rather than additive

6 / 32

Related Work in High-dimensional Case

• Linear parabolic PDEs: Monte Carlo methods based on the
Feynman-Kac formula

• Semilinear parabolic PDEs:
1. branching diffusion approach (Henry-Labordère 2012,

Henry-Labordère et al. 2014)
2. multilevel Picard approximation (E et al. 2016)

• Hamilton-Jacobi PDEs: using Hopf formula and fast
convex/nonconvex optimization methods (Darbon & Osher
2016, Chow et al. 2017)

7 / 32

Table of Contents

1. Introduction

2. Mathematical Formulation

3. Neural Network Approximation

4. Numerical Examples

5. Summary

8 / 32

Semilinear Parabolic PDE

We consider a general semilinear parabolic PDE in [0, T]× Rd:

∂u

∂t
(t, x) + 1

2Tr
(
σσT(t, x)(Hessxu)(t, x)

)
+∇u(t, x) · µ(t, x)

+ f
(
t, x, u(t, x), σT(t, x)∇u(t, x)

)
= 0.

• Terminal condition is given: u(T, x) = g(x).

• To fix ideas, we are interested in the solution at t = 0, x = ξ
for some vector ξ ∈ Rd.

9 / 32

Connection between PDE and BSDE

• The link between parabolic PDEs and backward stochastic
differential equations (BSDEs) has been extensively
investigated (Pardoux & Peng 1992, El Karoui et al. 1997,
etc).

• In particular, Markovian BSDEs give a nonlinear Feynman-Kac
representation of some nonlinear parabolic PDEs.

• Consider the following BSDE
Xt = ξ +

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs,

Yt = g(XT) +
∫ T

t
f(s,Xs, Ys, Zs) ds−

∫ T

t
(Zs)T dWs,

The solution is an adapted process {(Xt, Yt, Zt)}t∈[0,T] with
values in Rd × R× Rd.

10 / 32

Connection between PDE and BSDE
• Under suitable regularity assumptions, the BSDE is well-posed

and related to the PDE in the sense that for all t ∈ [0, T] it
holds a.s. that

Yt = u(t,Xt) and Zt = σT(t,Xt)∇u(t,Xt).

• In other words, given the stochastic process satisfying

Xt = ξ +
∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs,

the solution of PDE satisfies the following SDE

u(t,Xt)− u(0, X0)

=−
∫ t

0
f
(
s,Xs, u(s,Xs), σT(s,Xs)∇u(s,Xs)

)
ds

+
∫ t

0
[∇u(s,Xs)]T σ(s,Xs) dWs.

11 / 32

BSDE and Control – A LQG Example
Consider a classical linear-quadratic-Gaussian (LQG) control
problem in Rd:

dXt = 2
√
λmt dt+

√
2 dWt,

with cost functional J({mt}0≤t≤T) = E
[∫ T

0 ‖mt‖22 dt+ g(XT)
]
.

The HJB equation for this problem is

∂u

∂t
(t, x) + ∆u(t, x)− λ‖∇u(t, x)‖22 = 0.

The optimal control is given by

m∗t = ∇u(t, x)√
2λ

, (recall Zt = σT(t,Xt)∇u(t,Xt)).

In the context of BSDE for control, Yt denotes the optimal value
and Zt denotes the optimal control (up to a constant scaling).

12 / 32

Table of Contents

1. Introduction

2. Mathematical Formulation

3. Neural Network Approximation

4. Numerical Examples

5. Summary

13 / 32

Neural Network Approximation

• Key step: approximate the function x 7→ σT(t, x)∇u(t, x) at
each discretized time step t = tn by a feedforward neural
network

σT(tn, Xtn)∇u(tn, Xtn) = (σT∇u)(tn, Xtn)
≈ (σT∇u)(tn, Xtn |θn),

where θn denotes neural network parameters.

• Observation: we can stack all the subnetworks together to
form a deep neural network (DNN) as a whole, based on the
time discretization (see the next two slides).

14 / 32

Time Discretization

We consider the simple Euler scheme of the BSDE, with a
partition of the time interval [0, T], 0 = t0 < t1 < . . . < tN = T :

Xtn+1 −Xtn ≈ µ(tn, Xtn) ∆tn + σ(tn, Xtn) ∆Wn,

and

u(tn+1, Xtn+1)− u(tn, Xtn)
≈− f

(
tn, Xtn , u(tn, Xtn), σT(tn, Xtn)∇u(tn, Xtn)

)
∆tn

+ [∇u(tn, Xtn)]T σ(tn, Xtn) ∆Wn,

where
∆tn = tn+1 − tn, ∆Wn = Wtn+1 −Wtn .

15 / 32

Network Architecture

Figure: Network architecture for solving parabolic PDEs. Each column
corresponds to a subnetwork at time t = tn. The whole network has
(H + 2)(N − 1) layers in total.

16 / 32

Optimization

• This network takes the paths {Xtn}0≤n≤N and {Wtn}0≤n≤N

as the input data and gives the final output, denoted by
û({Xtn}0≤n≤N , {Wtn}0≤n≤N), as an approximation to
u(tN , XtN).

• The error in the matching of given terminal condition defines
the expected loss function

l(θ) = E

[∣∣g(XtN)− û
(
{Xtn}0≤n≤N , {Wtn}0≤n≤N

)∣∣2].
• The paths can be simulated easily. Therefore the commonly

used SGD algorithm fits this problem well.

• We call the introduced methodology deep BSDE method since
we use the BSDE and DNN as essential tools.

17 / 32

Time Discretization as Skip Connection

Why such deep networks can be trained?

Intuition: there are skip connections between different subnetworks

u(tn+1, Xtn+1)− u(tn, Xtn)
≈− f

(
tn, Xtn , u(tn, Xtn), (σT∇u)(tn, Xtn |θn)

)
∆tn

+ (σT∇u)(tn, Xtn |θn) ∆Wn,

18 / 32

Analogy to Deep Reinforcement Learning

• Deep Reinforcement Learning (DRL) has achieved great
success in game domains and sophisticated control tasks. A
common strategy is to represent policy function (control)
through neural networks.

• Recall that in the example of LQG control problem, Zt

denotes the optimal control, which is approximated by neural
networks.

Table: Informal analogy

Deep BSDE method DRL

BSDE ←→ Markov decision model
gradient of the solution ←→ optimal policy function

19 / 32

Table of Contents

1. Introduction

2. Mathematical Formulation

3. Neural Network Approximation

4. Numerical Examples

5. Summary

20 / 32

Implementation

• Each subnetwork has 4 layers, with 1 input layer
(d-dimensional), 2 hidden layers (both d+ 10-dimensional),
and 1 output layer (d-dimensional).

• Choose the rectifier function (ReLU) as the activation
function and optimize with Adam method.

• Implement in Tensorflow and reported examples are all run on
a Macbook Pro.

• Github: https://github.com/frankhan91/DeepBSDE

21 / 32

https://github.com/frankhan91/DeepBSDE

LQG Example Revisited
We solve the introduced HJB equation in [0, 1]× R100. It admits
an explicit formula, which allows accuracy test:

u(t, x) = − 1
λ

ln
(
E

[
exp

(
− λg(x+

√
2WT−t)

)])
.

0 10 20 30 40 50

lambda

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

u
(0
,0
,.
..
,0
)

Deep BSDE Solver

Monte Carlo

Figure: Left: Relative error of the deep BSDE method for
u(t=0, x=(0, . . . , 0)) when λ = 1, which achieves 0.17% in a runtime of 330
seconds. Right: Optimal cost u(t=0, x=(0, . . . , 0)) against different λ.

22 / 32

Black-Scholes Equation with Default Risk

• The classical Black-Scholes model can and should be
augmented by some important factors in real markets,
including defaultable securities, transactions costs,
uncertainties in the model parameters, etc.

• Ideally the pricing models should take into account the whole
basket of financial derivative underlyings, resulting in
high-dimensional nonlinear PDEs.

• To test the deep BSDE method, we study a special case of
the recursive valuation model with default risk (Duffie et al.
1996, Bender et al. 2015).

23 / 32

Black-Scholes Equation with Default Risk

• Consider the fair price of a European claim based on 100
underlying assets conditional on no default having occurred
yet.

• The underlying asset price moves as a geometric Brownian
motion and the possible default is modeled by the first jump
time of a Poisson process.

• The claim value is modeled by a parabolic PDE with the
nonlinear function

f
(
t, x, u(t, x), σT(t, x)∇u(t, x)

)
=− (1− δ)Q(u(t, x))u(t, x)−Ru(t, x).

24 / 32

Black-Scholes Equation with Default Risk
The not explicitly known “exact” solution at t = 0
x = (100, . . . , 100) is computed by the multilevel Picard method.

Figure: Approximation of u(t=0, x=(100, . . . , 100)) against number of
iteration steps. The deep BSDE method achieves a relative error of size
0.46% in a runtime of 617 seconds.

25 / 32

Allen-Cahn Equation

The Allen-Cahn equation is a reaction-diffusion equation for the
modeling of phase separation and transition in physics. Here we
consider a typical Allen-Cahn equation with the “double-well
potential” in 100-dimensional space:

∂u

∂t
(t, x) = ∆u(t, x) + u(t, x)− [u(t, x)]3 ,

with initial condition u(0, x) = g(x).

26 / 32

Allen-Cahn Equation

The not explicitly known “exact” solution at t = 0.3,
x = (0, . . . , 0) is computed by the branching diffusion method.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

u
(t
,0
,.
..
,0
)

Figure: Left: relative error of the deep BSDE method for
u(t=0.3, x=(0, . . . , 0)), which achieves 0.30% in a runtime of 647 seconds.
Right: time evolution of u(t, x=(0, . . . , 0)) for t ∈ [0, 0.3], computed by means
of the deep BSDE method.

27 / 32

An Example with Quadratically Growing
Derivatives

We consider an example studied for the numerical methods of PDE
in literature (Gobet & Turkedjiev 2016).
The PDE is constructed artificially in a form

∂u

∂t
(t, x) + ‖(∇xu)(t, x)‖22 + 1

2 (∆xu)(t, x)

= ∂ψ

∂t
(t, x) + ‖(∇xψ)(t, x)‖22 + 1

2 (∆xψ)(t, x),

with the explicit solution

ψ(t, x) = sin
(
[T − t+ ‖x‖22/d]0.4

)
.

28 / 32

An Example with Quadratically Growing
Derivatives

Compared to the literature, we set d = 100 instead of d ∈ {3, 5, 7}
and T = 1 instead T = 0.2.

Figure: Left: relative error of the deep BSDE method for
u(t=0, x=(0, . . . , 0)), which achieves 0.09% in a runtime of 957 seconds.
Right: learning curves of the loss function.

29 / 32

References and Follow-up Works

• References:
I Han, Jentzen, and E, Solving high-dimensional partial

differential equations using deep learning, arXiv:1707.02568

I E, Han, and Jentzen, Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and
backward stochastic differential equations, Communications in
Mathematics and Statistics (2017)

• Follow-up works:
I Beck et al. 2017: deep 2BSDE method – solve fully nonlinear

PDEs and second-order BSDEs through their connections and
approximate the gradient and Hessian by DNN.

I Henry-Labordère 2017: deep primal-dual algorithm for BSDEs

I Fujii et al. 2017: use asymptotic expansion as prior knowledge
to reduce error and accelerate convergence.

30 / 32

Table of Contents

1. Introduction

2. Mathematical Formulation

3. Neural Network Approximation

4. Numerical Examples

5. Summary

31 / 32

Summary

This work proposes the so-called deep BSDE method, which can
solve general nonlinear high-dimensional parabolic PDEs.

1. We reformulate the parabolic PDEs as BSDEs and
approximate the unknown gradient by deep neural networks.

2. Numerical results validate the proposed algorithm in high
dimensions, in terms of both accuracy and speed.

3. This opens up new possibilities in various disciplines involving
PDE modelings.

Thank you for your attention!

32 / 32

	Introduction
	Mathematical Formulation
	Neural Network Approximation
	Numerical Examples
	Summary

