Randomized sparse Kaczmarz methods

Dirk Lorenz, joint with Frank Schöpfer, Feb 9, 2018
Inverse Problems and Machine Learning, Caltech 2018

- The Kaczmarz method
- Randomization
- Sparsity
- Split feasibility problems
- Convergence rates

Just solving systems of linear equations

Przybliżone rozzviazywanie ukladów rózvnań liniouvych. Angenäherte Auflösung von Systemen linearer Gleichungeñ. Angenäherte Auflösung von System

de M. S. KACZMARZ,

fósentée le 14 Juin 1887 par M. Th. Banachiewicz m. t.
Obgleich die angenäherte Auflösung der Gleichung $f(x)=0$ Obgleich die angen zahlreiche Bearbeitungen in der Literatur mit einer Unbekannten zahireiche sehr wenig uber die Auflösung von aufweist, wissen wir dennoch sehr wenig uber die Es gibt zwar Gleichungssystemen, sogar wenn sie linear sind. Es gibt zwar

- $A x=b$ pretty arbitrary (but consistent), m rows, n columns

Just solving systems of linear equations

Przybliżone rozzviazzywanie ukladów równań liniozvych.Angenäherte Auflösung von Systemen linearer Gleichungeñ.

Note

de M. S. KACZMARZ,
fósentée le 14 Juin 1887 par M. Th. Banachiewiez m. t.
Obgleich die angenäherte Auflösung der Gleichung $f(x)=0$ Obgleich die angenaherte mit einer Unbekannten zahireiche wear wig uber die Auflösung von sufweist, wissen wir dennoch sehr wenig uber die As gibt zwar Gleichunggsystemen, sogar wenn sie linear sind. Es gibt 2war

- $A x=b$ pretty arbitrary (but consistent), m rows, n columns
- Solve only one row $\left\langle a_{i}, x\right\rangle=b$ by projecting onto the hyperplane of solutions:

$$
x^{k+1}=x^{k}-\frac{\left\langle x^{k}, a_{i}\right\rangle-b_{i}}{\left\|a_{i}\right\|^{2}} a_{i}
$$

Just solving systems of linear equations

Przybliżone rozzviazzywanie ukladów równań liniouvych. Angenäherte Auflösung von Systemen linearer Gleichungen.

Note

de M. S. KACZMARZ,
fósentée le 14 Juin 1887 par M. Th. Banachiewiez m. t.
Obgleich die angenäherte Auflösung der Gleichung $f(x)=0$ Obgleich die angenaherteiche Bearbeitungen in der Literatur mit einer Unbekannten zahireiche wear wig uber die Auflösung von sufweist, wissen wir dennoch sehr wenig uber die As gibt zwar aleichungssystemen, sogar wenn sie linear sind. Es gibt 2war

- $A x=b$ pretty arbitrary (but consistent), m rows, n columns
- Solve only one row $\left\langle a_{i}, x\right\rangle=b$ by projecting onto the hyperplane of solutions:

$$
x^{k+1}=x^{k}-\frac{\left\langle x^{k}, a_{i}\right\rangle-b_{i}}{\left\|a_{i}\right\|^{2}} a_{i}
$$

- Each projection just needs $O(n)$ operations

Just solving systems of linear equations

Przyblizone rozzviazywanie układów równań liniozvych.Angenäherte Auflösung von Systemen linearer Gleichungen.

Note
de M. s. KACZMARZ,
dientée le 14 Juin 1987 par M. Th. Banachiowicz m. t.
Obgleich die angenäherte Auflösung der Gleichung $f(x)=0$ Obgleich die angenaherlreiche Bearbeitungen in der Literatur mit einer Unbekannten zahireiche Benig uber die Auflosung von sufweist, wissen wir dennoch sehr wenig uber sind. Es gibt zwar Aleichungsyystemen, sogar wenn sie linear sind. Es gibt 2 war

- $A x=b$ pretty arbitrary (but consistent), m rows, n columns
- Solve only one row $\left\langle a_{i}, x\right\rangle=b$ by projecting onto the hyperplane of solutions:

$$
x^{k+1}=x^{k}-\frac{\left\langle x^{k}, a_{i}\right\rangle-b_{i}}{\left\|a_{i}\right\|^{2}} a_{i}
$$

- Each projection just needs $O(n)$ operations
- Amount for one pass through all columns same as applying A

Just solving systems of linear equations

Przyblizone rozzviqzywanie układów równań liniouvych.Angenäherte Auflösung von Systemen linearer Gleichungen.

Note

de M. s. KACZMARZ,
fésentée le 14 Juin 1887 par M. Th. Banachiewicz m. t.
Obgleich die angenäherte Auflösung der Gleichung $f(x)=0$ Obgleich mit einer Unbekannten zahireiche Bearbig tber die Auflösung von sufweist, wissen wir dennoch sehr wenig uber die Aus gibt zwar aleichunggsystemen, sogar wenn sie linear sind. Es gibt 2war

- $A x=b$ pretty arbitrary (but consistent), m rows, n columns
- Solve only one row $\left\langle a_{i}, x\right\rangle=b$ by projecting onto the hyperplane of solutions:

$$
x^{k+1}=x^{k}-\frac{\left\langle x^{k}, a_{i}\right\rangle-b_{i}}{\left\|a_{i}\right\|^{2}} a_{i}
$$

- Each projection just needs $O(n)$ operations
- Amount for one pass through all columns same as applying A
- Stefan Kaczmarz [1937]: Convergent to some solution for all consistent systems

Learning with Kaczmarz

- Unknown distibution ρ on $X \times \gamma=\mathbf{R}^{d} \times \mathbf{R}$, regression function $f_{\rho}(a)=\int y d \rho(y \mid a)$
- Hypothesis space $\mathcal{H}=\left\{f_{x} \in L_{\rho_{X}}^{2}, x \in \mathbf{R}^{d}\right\}, f_{x}(a)=\langle a, x\rangle$
- Learning: Obtain samples $a \in X^{\prime}, b \in \gamma$ sequentially and try to learn x
- Kaczmarz: Update x^{k} by

$$
x^{k+1}=x^{k}-\frac{\left\langle x^{k}, a\right\rangle-b}{\|a\|^{2}} a
$$

- Goal: Show that x^{k} converges to some x^{*} such that

$$
f_{x^{*}}=\underset{f \in \mathcal{H}}{\operatorname{argmin}} \mathbf{E}(f)=\underset{f \in \mathcal{H}}{\operatorname{argmin}} \int_{X \times Y}(b-f(a))^{2} d \rho
$$

[Lin, Zhou 2015]

- Here focus on Kaczmarz as an algorithm for solving systems

Convergence speed?

$m=6$ rows, $n=2$ columns:

Convergence speed?

$m=12$ rows, $n=2$ columns:

Convergence speed?

rows, $n=2$ columns:

- Btw: Randomized Kaczmarz is stochastic gradient descent for $\sum_{i}\left(\left\langle a_{i}, x\right\rangle-b_{i}\right)^{2}$
- Randomization
- Sparsity
- Split feasibility problems
- Convergence rates

Randomization leads to linear convergence

- In each iteration, choose index i with probability p_{i}.
- If \hat{x} solves (i.e. $\left\langle\hat{x}, a_{i}\right\rangle=b_{i}$), then

$$
\left\|x^{k+1}-\hat{x}\right\|^{2}=\left\|x^{k}-\hat{x}\right\|^{2}-\frac{\left(\left\langle x^{k}-\hat{x}, a_{i}\right\rangle\right)^{2}}{\left\|a_{i}\right\|^{2}}
$$

- Taking the expectation over the choice of i gives

$$
\begin{aligned}
\mathbf{E}\left(\left\|x^{k+1}-\hat{x}\right\|^{2}\right) & =\left\|x^{k}-\hat{x}\right\|^{2}-\sum_{i} p_{i} \frac{\left(\left\langle x^{k}-\hat{x}, a_{i}\right\rangle\right)^{2}}{\left\|a_{i}\right\|^{2}} \\
& =\left\|x^{k}-\hat{x}\right\|^{2}-\left\langle A\left(x^{k}-\hat{x}\right), D A\left(x^{k}-\hat{x}\right)\right\rangle
\end{aligned}
$$

with $D=\operatorname{diag}\left(p_{i} /\left\|a_{i}\right\|^{2}\right)$.

- Gives uniform improvement

$$
\mathbf{E}\left(\left\|x^{k+1}-\hat{x}\right\|^{2}\right) \leq(1-\lambda)\left\|x^{k}-\hat{x}\right\|^{2}, \quad \lambda=\lambda_{\min }\left(A^{\top} D A\right)
$$

Theorem

$A \in \mathbf{R}^{m \times n}, m \geq n$ with full rank, $A \hat{x}=b$, then iterates of randomized Kaczmarz fulfill

$$
\mathbf{E}\left(\left\|x^{k}-\hat{x}\right\|^{2}\right) \leq(1-\lambda)^{k}\left\|x^{0}-\hat{x}\right\|^{2}
$$

with $\lambda=\lambda_{\text {min }}\left(A^{\top} D A\right), D=\operatorname{diag}\left(p_{i} /\left\|a_{i}\right\|^{2}\right)$.

Theorem

$A \in \mathbf{R}^{m \times n}, m \geq n$ with full rank, $A \hat{x}=b$, then iterates of randomized Kaczmarz fulfill

$$
\mathbf{E}\left(\left\|x^{k}-\hat{x}\right\|^{2}\right) \leq(1-\lambda)^{k}\left\|x^{0}-\hat{x}\right\|^{2}
$$

with $\lambda=\lambda_{\text {min }}\left(A^{\top} D A\right), D=\operatorname{diag}\left(p_{i} /\left\|a_{i}\right\|^{2}\right)$.

- Result due to [Stohmer, Vershynin 2009]

Theorem

$A \in \mathbf{R}^{m \times n}, m \geq n$ with full rank, $A \hat{x}=b$, then iterates of randomized Kaczmarz fulfill

$$
\mathbf{E}\left(\left\|x^{k}-\hat{x}\right\|^{2}\right) \leq(1-\lambda)^{k}\left\|x^{0}-\hat{x}\right\|^{2}
$$

with $\lambda=\lambda_{\text {min }}\left(A^{\top} D A\right), D=\operatorname{diag}\left(p_{i} /\left\|a_{i}\right\|^{2}\right)$.

- Result due to [Stohmer, Vershynin 2009]
- Choice $p_{i}=\frac{\left\|a_{i}\right\|^{2}}{\|A\|_{F}^{2}}$ gives $D=\|A\|_{F}^{-2} I$, i.e.

$$
\lambda=\frac{\lambda_{\min }\left(A^{\top} A\right)}{\|A\|_{F}^{2}}=\frac{\sigma_{\min }(A)}{\|A\|_{F}^{2}}=: \kappa(A)
$$

Theorem

$A \in \mathbf{R}^{m \times n}, m \geq n$ with full rank, $A \hat{x}=b$, then iterates of randomized Kaczmarz fulfill

$$
\mathbf{E}\left(\left\|x^{k}-\hat{x}\right\|^{2}\right) \leq(1-\lambda)^{k}\left\|x^{0}-\hat{x}\right\|^{2}
$$

with $\lambda=\lambda_{\text {min }}\left(A^{\top} D A\right), D=\operatorname{diag}\left(p_{i} /\left\|a_{i}\right\|^{2}\right)$.

- Result due to [Stohmer, Vershynin 2009]
- Choice $p_{i}=\frac{\left\|a_{i}\right\|^{2}}{\|A\|_{F}^{2}}$ gives $D=\|A\|_{F}^{-2} I$, i.e.

$$
\lambda=\frac{\lambda_{\min }\left(A^{\top} A\right)}{\|A\|_{F}^{2}}=\frac{\sigma_{\min }(A)}{\|A\|_{F}^{2}}=: \kappa(A)
$$

- Experimentally: above p not optimal, other p give larger λ

Underdetermined systems

- Consider $A x=b$, underdetermined but consistent

Underdetermined systems

- Consider $A x=b$, underdetermined but consistent
- Which solution does Kaczmarz pick?

Underdetermined systems

- Consider $A x=b$, underdetermined but consistent
- Which solution does Kaczmarz pick?
- Initialization $x^{0}=0\left(\operatorname{or} x^{0} \in \operatorname{rg} A^{T}\right)$, then all iterates $x^{k} \in \operatorname{rg} A^{T}$

Underdetermined systems

- Consider $A x=b$, underdetermined but consistent
- Which solution does Kaczmarz pick?
- Initialization $x^{0}=0\left(\right.$ or $\left.x^{0} \in \operatorname{rg} A^{T}\right)$, then all iterates $x^{k} \in \operatorname{rg} A^{T}$
- Assume \hat{x} solution in $\operatorname{rg} A^{T}$

Underdetermined systems

- Consider $A x=b$, underdetermined but consistent
- Which solution does Kaczmarz pick?
- Initialization $x^{0}=0\left(\right.$ or $\left.x^{0} \in \operatorname{rg} A^{T}\right)$, then all iterates $x^{k} \in \operatorname{rg} A^{T}$
- Assume \hat{x} solution in $\operatorname{rg} A^{T}$
- $Z \in \mathbf{R}^{n \times m}$, columns form ONB of $r g A^{T}$, then $x^{k}=Z Z^{\top} x^{k}, Z Z^{\top} \hat{x}=\hat{x}$.

Underdetermined systems

- Consider $A x=b$, underdetermined but consistent
- Which solution does Kaczmarz pick?
- Initialization $x^{0}=0\left(\right.$ or $\left.x^{0} \in \operatorname{rg} A^{T}\right)$, then all iterates $x^{k} \in \operatorname{rg} A^{T}$
- Assume \hat{x} solution in $\operatorname{rg} A^{T}$
- $Z \in \mathbf{R}^{n \times m}$, columns form ONB of $r g A^{\top}$, then $x^{k}=Z Z^{\top} x^{k}, Z Z^{\top} \hat{x}=\hat{x}$.
- As above:

$$
\mathbf{E}\left(\left\|x^{k}-\hat{x}\right\|^{2}\right) \leq(1-\lambda)^{k}\left\|x^{0}-\hat{x}\right\|^{2}
$$

$\lambda=\lambda_{\text {min }}\left(Z^{\top} A^{\top} D A Z\right), D=\operatorname{diag}\left(p_{i} /\left\|a_{i}\right\|^{2}\right)$

Underdetermined systems

- Consider $A x=b$, underdetermined but consistent
- Which solution does Kaczmarz pick?
- Initialization $x^{0}=0\left(\right.$ or $\left.x^{0} \in \operatorname{rg} A^{T}\right)$, then all iterates $x^{k} \in \operatorname{rg} A^{T}$
- Assume \hat{x} solution in $\operatorname{rg} A^{T}$
- $Z \in \mathbf{R}^{n \times m}$, columns form ONB of $r g A^{T}$, then $x^{k}=Z Z^{\top} x^{k}, Z Z^{\top} \hat{x}=\hat{x}$.
- As above:

$$
\begin{aligned}
& \mathbf{E}\left(\left\|x^{k}-\hat{x}\right\|^{2}\right) \leq(1-\lambda)^{k}\left\|x^{0}-\hat{x}\right\|^{2} \\
& \lambda=\lambda_{\text {min }}\left(Z^{\top} A^{\top} D A Z\right), D=\operatorname{diag}\left(p_{i} /\left\|a_{i}\right\|^{2}\right)
\end{aligned}
$$

- Convergence to minimum-norm solution \hat{x}
- Randomization
- Sparsity
- Split feasibility problems
- Convergence rates

Kaczmarz converging to sparse solutions?

- Kaczmarz converges to (unique) solution in $x^{0}+\operatorname{rg} A^{T}$ (if consistent)

Kaczmarz converging to sparse solutions?

- Kaczmarz converges to (unique) solution in $x^{0}+\operatorname{rg} A^{\top}$ (if consistent)
- This is the solution with $\min \|x\|_{2}$

Kaczmarz converging to sparse solutions?

- Kaczmarz converges to (unique) solution in $x^{0}+\operatorname{rg} A^{T}$ (if consistent)
- This is the solution with min $\|x\|_{2}$
- Convergence to other solutions? (e.g. min $\|x\|_{1}$)

Kaczmarz converging to sparse solutions?

- Kaczmarz converges to (unique) solution in $x^{0}+\operatorname{rg} A^{T}$ (if consistent)
- This is the solution with min $\|x\|_{2}$
- Convergence to other solutions? (e.g. min $\|x\|_{1}$)
- Kaczmarz

$$
x^{k+1}=x^{k}-\frac{a_{i}^{\top} x_{k}-b_{i}}{\left\|a_{i}\right\|_{2}^{2}} a_{i}
$$

Kaczmarz converging to sparse solutions?

- Kaczmarz converges to (unique) solution in $x^{0}+\operatorname{rg} A^{\top}$ (if consistent)
- This is the solution with min $\|x\|_{2}$
- Convergence to other solutions? (e.g. min $\|x\|_{1}$)
- Sparse Kaczmarz

$$
\begin{aligned}
& z^{k+1}=z^{k}-\frac{a_{i}^{\top} x_{k}-b_{i}}{\left\|a_{i}\right\|_{2}^{2}} a_{i} \\
& x^{k+1}=S_{\lambda}\left(z^{k+1}\right)
\end{aligned}
$$

Kaczmarz converging to sparse solutions?

- Kaczmarz converges to (unique) solution in $x^{0}+\operatorname{rg} A^{\top}$ (if consistent)
- This is the solution with min $\|x\|_{2}$
- Convergence to other solutions? (e.g. min $\|x\|_{1}$)
- Sparse Kaczmarz

$$
\begin{aligned}
& z^{k+1}=z^{k}-\frac{a_{i}^{\top} x_{k}-b_{i}}{\left\|a_{i}\right\|_{2}^{2}} a_{i} \\
& x^{k+1}=S_{\lambda}\left(z^{k+1}\right)
\end{aligned}
$$

- Theorem [L, Schöpfer, Wenger, Magnor 2014]: The sequence x^{k}, when initialized with $x^{0}=0$, converges to the solution of

$$
\min \|x\|_{1}+\frac{1}{2 \lambda}\|x\|_{2}^{2} \text { such that } A x=b
$$

if every i appears infinitely often

Sparse Kaczmarz and linearized Bregman

$$
\begin{aligned}
& z^{k+1}=z^{k}-\frac{a_{r(k)}^{T} x_{k}-b_{r(k)}}{\left\|a_{r(k)}\right\|_{2}^{2}} a_{r(k)} \\
& x^{k+1}=S_{\lambda}\left(z^{k+1}\right)
\end{aligned}
$$

- Two interesting things:
l. Very similar to Kaczmarz. Other "minimum-J-solutions" possible?

2. Very similar to linearized Bregman iteration.

$$
z^{k+1}=z^{k}-t_{k} A^{T}\left(A x^{k}-b\right), \quad t_{k} \leq \frac{1}{\|A\|^{2}}
$$

Sparse Kaczmarz and linearized Bregman

$$
\begin{aligned}
& z^{k+1}=z^{k}-\frac{a_{r(k)}^{\top} x_{k}-b_{r(k)}}{\left\|a_{r(k)}\right\|_{2}^{2}} a_{r(k)} \\
& x^{k+1}=S_{\lambda}\left(z^{k+1}\right)
\end{aligned}
$$

- Two interesting things:
l. Very similar to Kaczmarz. Other "minimum-J-solutions" possible?

2. Very similar to linearized Bregman iteration.

$$
z^{k+1}=z^{k}-t_{k} A^{T}\left(A x^{k}-b\right), \quad t_{k} \leq \frac{1}{\|A\|^{2}}
$$

- Approach taken here: "Split feasibility problems" will answer the first and explain the second point.
- Split feasibility problems
- Convergence rates

Convex split feasibility problems

- Split feasibility problem (SFP): Find x, such that

$$
x \in \bigcap_{i=1}^{N_{C}} C_{i}, \quad A_{i} x \in Q_{i}, i=1, \ldots, N_{Q}
$$

C_{i}, Q_{i} convex sets, A_{i} linear

Convex split feasibility problems

- Split feasibility problem (SFP): Find x, such that

$$
x \in \bigcap_{i=1}^{N_{C}} C_{i}, \quad A_{i} x \in Q_{i}, i=1, \ldots, N_{Q}
$$

C_{i}, Q_{i} convex sets, A_{i} linear

- For a mere "feasibility problem": Do alternating projections
$x^{k+1}=P_{C_{i}}\left(x^{k}\right)$
$i=\left(k \bmod N_{C}\right)+1$ "control sequence"

Convex split feasibility problems

- Split feasibility problem (SFP): Find x, such that

$$
x \in \bigcap_{i=1}^{N_{C}} C_{i}, \quad A_{i} x \in Q_{i}, i=1, \ldots, N_{Q}
$$

C_{i}, Q_{i} convex sets, A_{i} linear

- For a mere "feasibility problem": Do alternating projections
$x^{k+1}=P_{C_{i}}\left(x^{k}\right)$
$i=\left(k \bmod N_{C}\right)+1$ "control sequence"

- [1933 von Neumann (two subspaces), 1962 Halperin (several subspaces), Dijkstra, Censor, Combettes, Bauschke, Borwein, Deutsch, Lewis, Luke...]

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$: Project onto separating hyperplane

$$
H^{k}=\left\{x \mid\left\langle A x^{k}-P_{Q}\left(A x^{k}\right), A x-P_{Q}\left(A x^{k}\right)\right\rangle \leq 0\right\}
$$

(separates x^{k} from $\{x \mid A x \in Q\}$)

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$: Project onto separating hyperplane

$$
H^{k}=\left\{x \mid\left\langle A x^{k}-P_{Q}\left(A x^{k}\right), A x-P_{Q}\left(A x^{k}\right)\right\rangle \leq 0\right\}
$$

(separates x^{k} from $\{x \mid A x \in Q\}$)

- . $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$ for a constraint $A_{i} x \in Q_{i}$

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$: Project onto separating hyperplane

$$
H^{k}=\left\{x \mid\left\langle A x^{k}-P_{Q}\left(A x^{k}\right), A x-P_{Q}\left(A x^{k}\right)\right\rangle \leq 0\right\}
$$

(separates x^{k} from $\{x \mid A x \in Q\}$)

- - $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$ for a constraint $A_{i} x \in Q_{i}$

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$: Project onto separating hyperplane

$$
H^{k}=\left\{x \mid\left\langle A x^{k}-P_{Q}\left(A x^{k}\right), A x-P_{Q}\left(A x^{k}\right)\right\rangle \leq 0\right\}
$$

(separates x^{k} from $\{x \mid A x \in Q\}$)

- - $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$ for a constraint $A_{i} x \in Q_{i}$

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$: Project onto separating hyperplane

$$
H^{k}=\left\{x \mid\left\langle A x^{k}-P_{Q}\left(A x^{k}\right), A x-P_{Q}\left(A x^{k}\right)\right\rangle \leq 0\right\}
$$

(separates x^{k} from $\{x \mid A x \in Q\}$)

- - $x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$ for a constraint $A_{i} x \in Q_{i}$

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$: Project onto separating hyperplane

$$
H^{k}=\left\{x \mid\left\langle A x^{k}-P_{Q}\left(A x^{k}\right), A x-P_{Q}\left(A x^{k}\right)\right\rangle \leq 0\right\}
$$

(separates x^{k} from $\{x \mid A x \in Q\}$)

- $\cdot x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$ for a constraint $A_{i} x \in Q_{i}$
- Converges to feasible point.

Tackling split feasibility problems

- Projecting onto $\{x \mid A x \in Q\}$: Project onto separating hyperplane

$$
H^{k}=\left\{x \mid\left\langle A x^{k}-P_{Q}\left(A x^{k}\right), A x-P_{Q}\left(A x^{k}\right)\right\rangle \leq 0\right\}
$$

(separates x^{k} from $\{x \mid A x \in Q\}$)

- $\cdot x^{k+1}=P_{C_{i}}\left(x^{k}\right)$ for a constraint $u \in C_{i}$
- $x^{k+1}=P_{H^{k}}\left(x^{k}\right)$ for a constraint $A_{i} x \in Q_{i}$
- Converges to feasible point.
- E.g.: $Q=\{b\}: x^{k+1}=x^{k}+t_{k} A^{T}\left(A x^{k}-b\right)$
\rightsquigarrow minimum norm solution of $A x=b$

Towards sparse solutions with Bregman projections

- $P_{C}(x)=\operatorname{argmin}_{y \in C}\|x-y\|^{2} \rightsquigarrow$ orthogonal projection
- J : $X \rightarrow \mathbf{R}$ convex, $z \in \partial J(x)$

$$
D^{2}(x, y)=J(y)-J(x)-\langle z, y-x\rangle
$$

Bregman distance

- Bregman distances \rightsquigarrow Bregman projection:
$\Pi_{C}^{z}(x)=\operatorname{argmin}_{y \in C} D_{J}^{z}(x, y)$

Bregman projections

- Assume J : $\mathbf{R}^{n} \rightarrow \mathbf{R}$ continuous, α-strongly convex $\left(\Longrightarrow \nabla J^{*}\right.$ is α^{-1}-Lipschitz)
- Bregman projections onto hyperplanes $H=\left\{a^{T} x=\beta\right\}$ are simple: if $z \in \partial J(x)$

$$
\Pi_{H}^{z}(x)=\nabla J^{*}(z-\bar{t} a), \quad \bar{t}=\operatorname{argmin} J^{*}(z-t a)+t \beta
$$

Moreover: $z-\bar{t} a \in \partial J\left(\Pi_{H}^{z}(x)\right)$ new subgradient in $\Pi_{H}^{z}(x)$.

- RBPSFP: Random Bregman projections for SFP $x \in \cap C_{i}, A_{i} x \in Q_{i}$:
- Initialize $z_{0} \in \partial J\left(x_{0}\right)$
- $x^{k+1}=\Pi_{C_{i}}^{z^{k}}\left(x^{k}\right)$ or $x^{k+1}=\Pi_{H_{i}}^{Z^{k}}\left(x^{k}\right)$, update $z^{k} \in \partial J\left(x^{k}\right)$
- random: every index appears infinitely often

Convergence

- Theorem: [Schöpfer, L., Wenger 2014] RBPSFP converges to a feasible point $\bar{x} \in C:=\bigcap C_{i} \cap\left\{x \mid A_{i} x \in Q_{i}\right\}$.

Convergence

- Theorem: [Schöpfer, L., Wenger 2014] RBPSFP converges to a feasible point $\bar{x} \in C:=\bigcap C_{i} \cap\left\{x \mid A_{i} x \in Q_{i}\right\}$.
- Application to

$$
\min J(x) \text { s.t. } A x=b
$$

Multiple possibilities, e.g.
l. only one "difficult constraint": $A x \in Q=\{b\}$
2. many simple constraints $C_{i}=\left\{a_{i}^{\top} x=b_{i}\right\}$

Convergence

- Theorem: [Schöpfer, L., Wenger 2014] RBPSFP converges to a feasible point $\bar{x} \in C:=\bigcap C_{i} \cap\left\{x \mid A_{i} x \in Q_{i}\right\}$.
- Application to

$$
\min J(x) \text { s.t. } A x=b
$$

Multiple possibilities, e.g.

1. only one "difficult constraint": $A x \in Q=\{b\}$
2. many simple constraints $C_{i}=\left\{a_{i}^{\top} x=b_{i}\right\}$

- In both cases: Convergence to minimum-J solution

Sparse solutions

- $J(x)=\lambda\|x\|_{1}$ does not work - not strongly convex

Sparse solutions

- $J(x)=\lambda\|x\|_{1}$ does not work - not strongly convex
- $J(x)=\lambda\|x\|_{1}+\frac{1}{2}\|x\|^{2}$: strongly convex with constant 1

Sparse solutions

- $J(x)=\lambda\|x\|_{1}$ does not work - not strongly convex
- $J(x)=\lambda\|x\|_{1}+\frac{1}{2}\|x\|^{2}$: strongly convex with constant 1
- Bregman projection onto hyperplanes $H=\left\{a^{\top} x=\beta\right\}$: if $z \in \partial J(x)$

$$
\Pi_{H}^{z}(x)=\nabla J^{*}(z-\bar{t} a), \quad \bar{t}=\operatorname{argmin} J^{*}(z-t a)+t \beta
$$

Sparse solutions

- $J(x)=\lambda\|x\|_{1}$ does not work - not strongly convex
- $J(x)=\lambda\|x\|_{1}+\frac{1}{2}\|x\|^{2}$: strongly convex with constant 1
- Bregman projection onto hyperplanes $H=\left\{a^{\top} x=\beta\right\}$: if $z \in \partial J(x)$

$$
\Pi_{H}^{z}(x)=\nabla J^{*}(z-\bar{t} a), \quad \bar{t}=\operatorname{argmin} J^{*}(z-t a)+t \beta
$$

- $\nabla J^{*}(x)=(\partial J)^{-1}(x)=S_{\lambda}(x)$:

Basic algorithm and special cases:

- Variant 1: One difficult constraint $A x=b$
- Variant 2: Many simple constraints $a_{r}^{T} x=b_{r}$
- In general: Block-processing $A_{r} x=b_{r}$

Basic algorithm and special cases:

- Variant 1: One difficult constraint $A x=b$
- Variant 2: Many simple constraints $a_{r}^{\top} x=b_{r}$
- In general: Block-processing $A_{r} x=b_{r}$

Iteration:

- Calculate

$$
\begin{aligned}
& z^{k+1}=z^{k}-t_{k} A_{r}^{T} w^{k} \\
& x^{k+1}=\nabla J^{*}\left(z^{k+1}\right)
\end{aligned}
$$

with appropriate stepsize t_{k} (depending on w^{k} and β_{k})

Basic algorithm and special cases:

- Variant l: One difficult constraint $A x=b$
- Variant 2: Many simple constraints $a_{r}^{T} x=b_{r}$
- In general: Block-processing $A_{r} x=b_{r}$

Iteration:

- Calculate

$$
\begin{aligned}
& z^{k+1}=z^{k}-t_{k} A_{r}^{T} w^{k} \\
& x^{k+1}=\nabla J^{*}\left(z^{k+1}\right)
\end{aligned}
$$

with appropriate stepsize t_{k} (depending on w^{k} and β_{k})

- $J(x)=\|x\|_{2}^{2} / 2$, variant 1.: Landweber iteration
- $J(x)=\|x\|_{2}^{2} / 2$, variant 2.: Kaczmarz method
- $J(x)=\lambda\|x\|_{1}+\|x\|_{2}^{2} / 2$, variant 1.: Linearized Bregman
- $J(x)=\lambda\|x\|_{1}+\|x\|_{2}^{2} / 2$, variant 2.: Sparse Kaczmarz

Inexact stepsizes are allowed

- Instead of projecting exactly, it suffices to move close enough
- Linearized Bregman:

$$
t_{k}=\frac{\left\|A x^{k}-b\right\|^{2}}{\left\|A^{T}\left(A x^{k}-b\right)\right\|^{2}}, \quad \text { or } \quad t_{k} \leq \frac{1}{\|A\|^{2}}
$$

- However: To compute exact stepsize, solve one-dimensional piecewise quadratic optimization problem (for $J(x)=\lambda\|x\|_{1}+\|x\|_{2}^{2} / 2$ can be done in $\mathcal{O}(n \log n)$, usually faster).

Stepsize comparison - linearized Bregman

- Convergence rates

Convergence rates for RBPSFP

Theorem (Schöpfer, L. 2018)

RBPSFB with $C=\bigcap C_{i} \cap\left\{x \mid A_{i} x \in Q_{i}\right\}$ converges with a rate

$$
\mathbf{E}\left(\operatorname{dist}\left(x^{k}, C\right)\right)=\mathcal{O}(1 / \sqrt{k})
$$

if $\left\{C_{k}\right\}_{k}$ and each $\left\{Q_{i}, \operatorname{rg}\left(A_{i}\right)\right\}$ is boundedly linearly regular and $]$ is strongly convex.
If, additionally, J is piecewise linear quadratic, then method converges linearly, i.e.

$$
\mathbf{E}\left(\operatorname{dist}\left(x^{k}, C\right)\right)=\mathcal{O}\left(q^{k}\right)
$$

Proof based on error bounds...
Corollary: The randomized sparse Kaczmarz (RaSK) method converges linearly.

Taylores results for randomized sparse Kaczmarz

Theorem (Schöpfer, L. 2018)

For RaSK with exact steps (ERaSK) for a consistent overdetermined system $A x=b$ it holds that

$$
\mathbf{E}\left(\left\|x^{k}-x^{*}\right\|_{2}\right) \leq(1-\epsilon)^{k / 2} \sqrt{2 \lambda\|\hat{x}\|_{1}+\|\hat{x}\|_{2}^{2}}
$$

with

$$
\epsilon=\frac{\tilde{\sigma}_{\min }^{2}(A)}{2\|A\|_{F}^{2}} \frac{|\hat{x}|_{\min }}{|\hat{x}|_{\min }+2 \lambda}
$$

where $\tilde{\sigma}_{\text {min }}=\min \left\{\sigma_{\text {min }}\left(A_{J}\right) \mid A_{J} \neq 0\right.$ submatrix $\}$, $|\hat{x}|_{\text {min }}=\min \left\{\left|\hat{x}_{j}\right| \mid \hat{x}_{j} \neq 0\right\}$.

Randomized sparse Kaczmarz for noisy data

Following [Needell 2010] and [Lai, Yin 2013]:

Theorem

For $A x=b^{\delta}$ with $\left\|b^{\delta}-b\right\|_{2} \leq \delta$ it holds for RaSK

$$
\mathbf{E}\left(\left\|x^{k}-x^{*}\right\|_{2} \leq(1-\epsilon)^{k / 2} \sqrt{2 \lambda\|\hat{x}\|_{1}+\|\hat{x}\|_{2}^{2}}+\sqrt{\frac{2|\hat{x}|_{\min }+4 \lambda}{|\hat{x}|_{\min }}} \frac{\delta}{\tilde{\sigma}_{\min }(A)}\right.
$$

and for ERaSK the upper bound is

$$
(1-\epsilon)^{k / 2} \sqrt{2 \lambda\|\hat{x}\|_{1}+\|\hat{x}\|_{2}^{2}}+\sqrt{\frac{2|\hat{x}|_{\min }+4 \lambda}{|\hat{x}|_{\min }}} \frac{\delta}{\tilde{\sigma}_{\text {min }}(A)} \sqrt{1+\frac{4\|A\|_{2,1}}{\delta}}
$$

Sparsity also helps for overdetermined systems

- 200 columns, 1000 rows, consistent system $A x=b$, unique solution $x^{\dagger}, n n z\left(x^{\dagger}\right)=25$

Black: Randomized Kaczmarz, Red: Randomized sparse Kaczmarz, Green: Exact-step randomized sparse Kaczmarz

Sparsity also helps for overdetermined systems

- 200 columns, 1000 rows, inconsistent system $A x=b$, 10\% relative error

Black: Randomized Kaczmarz, Red: Randomized sparse Kaczmarz, Green: Exact-step randomized sparse Kaczmarz

Randomization also helps

- Matrix from fan-beam CT, consistent system $A x=b$, unique solution $x^{\dagger}, 100$ columns, 1164 rows, nnz $\left(x^{\dagger}\right)=20$

Blue: Sparse Kaczmarz, Red: Randomized sparse Kaczmarz

Randomization also helps

- Matrix from fan-beam CT, consistent system $A x=b$, unique solution $x^{\dagger}, 900$ columns, 3660 rows, $n n z\left(x^{\dagger}\right)=180$

Blue: Sparse Kaczmarz, Red: Randomized sparse Kaczmarz

Conclusion

- Randomization gives uniform expected progress, hence convergence rates
- Randomization usually improves (random reshuffle also works)
- Extension to sparse solutions simple; exact stepsize matters, though
- Convergence of RaSK and ERaSK linear
- Exacts steps faster, lower accuracy for noisy data

References

Dirk A. Lorenz, Frank Schöpfer, and Stephan Wenger, The linearized Bregman method via split feasibility problems: Analysis and generalizations, SIAM Journal on Imaging Sciences 2 (2014), no. 7, 1237-1262, [doi, arXiv].

Dirk A Lorenz, Stephan Wenger, Frank Schöpfer, and Marcus Magnor, A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing, Image Processing (ICIP), 2014 IEEE International Conference on, IEEE, 2014, [doi, arXiv], pp. 1347-1351.

Frank Schöpfer and Dirk A. Lorenz, Linear convergence of the Randomized Sparse Kaczmarz method, To appear in Mathematical Programming, 2018, [doi, arXiv].

