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Goals

The problem of super-resolution is dual of the problem of machine
learning, viewed as function approximation.

» How to measure the accuracy
» How to ensure lower bounds
» Common tools
Will illustrate on the (hyper-)sphere S9 of R+,



1. Machine learning



Machine learning on S9

Given data (training data) of the form D = {(xj,yj)}j"il, where

x; €89, y; € R,
find a function x — SN axG(x - zk)
> that models the data well;
» in particular, ZLVZI akG(xj - zx) = yj.

Tacit assumption: There exists an underlying function f such that
yj = f(x;) + noise.



RelLU networks

An RelLU network is a function of form

N

X Zak\wk-x—i—bk\.
k=1
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Wy - X+ by~

V(we2 +1)(Ix2 +1)
Approximation on Euclidean space ~» approximation on sphere



Notation on the sphere

ST = {x=(x1,...,Xq41) : Zi}xizl},

wq = Riemannian volume of §9

p(x,y) = geodesic distance between x and y.

M7 = class of all spherical polynomials of degree at most n.

HE’ = class of all homogeneous harmonic polynomials of degree /,
d;] = the dimension of HY,

{ Yk} = orthonormal basis for H.

A = Negative Laplace-Beltrami operator.

AYp =Ll +q—1)Yok =AY



Notation on the sphere

With p, = péq/2—1,q/2—1) (Jacobi polynomial),
Z Yi(x) Yer(y) = wotpe(1)pe(x - y).
If G:[-1,1] = R,

G(x-y)=
4

ZYZk )Yex(y)

00
=0 k=1

For a measure p on S9,

A, k) = /Sq Yox(y)du(y).



Notation on the sphere




Notation on the sphere

Localization
(Mh. 2004) If S > g and h is sufficiently smooth,

max(1, (np(x - y))*)

[®n(x-y)| < c(h,s)



Polynomial approximation

(Mh. 2004)

Ex(F) = min, [ = Pl

W, ={f € C(S?) : E,(f)=0O(n"")}.
Theorem TFAE
1. feW,
2. |[f =aa(f)ll = O(n™")

3. ||loan(f) — oon—1(f)|| = O(27"") (Littlewood-Paley type
expansion)



Data-based approximation

For C = {x;} €S9 D = {(x, y)}};.
1. Find N and w; € R such that

M

E WJ'P(XJ'):/ P(x)dx, P enj,
. Sq

J=1

and
M
> IwiP(x))| < C/Sq |P(x)|dx, P €Ny
j=1

Done by least squares or least residual solutions, to ensure a
good condition number.

M
Sn(D)(x) = D wiyiPn(x - x))

j=1



Data-based approximation

(Le Gia, Mh., 2008)
If {xj}j"il are chosen uniformly from pq, and f € W,, then with
high probability,

If = Sn(D)l|oc 3 M1,

If fis locally in W,, then the results holds locally as well; i.e.,
accuracy in approximation adapts itself according to local
smoothness.



f(x,y,2) =[0.01 — (x> + y* + (2 = 1)*)]4 + exp(x + y + 2)

Percentages of error less than 10% Least square, og3(h1), 063(/5).



f(x.y,2) = (x = 0.9)7* + (z - 0.9)*
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Percentages of error less than 10* Least square, oe3(h1), 063(hs).




Examples

East—west component of earth’'s magnetic field
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Original data on left (Courtesy Dr. Thorsten Maier),
reconstruction with o46(h7) on right



Let CAJ(E) 0B, 8> q, Cn a nested sequence of points with

0(Cm) = max min p(x, z) ~ 1(Cm) = , min, p(z1,22) > 1/m.

G(Cm) =span{G(o-2):z € Cp}.



(Mh. 2010)
Theorem Let 0 < r < B8 — q, then f € W, if and only if

dist(f,G(Cm)) = O(m™"),

Remark. The theorem gives lower limits for individual functions.



One problem

x;'s may not be distributed according to pq; their distribution is
unknown.



Drusen classification

» AMD (Age related Macular Degeneration) is the most
common cause of blindness among the elderly in the western
world.

» AMD «~ RPE (Retinal Pigment Epithelium) «~ Drusen
accumulation of different kinds

Problem: Automated quantitative prediction of disease
progression, based on drusen classification.



Drusen classification

(Ehler, Filbir, Mh., 2012)

We used 24 images (400 x 400 pixels each) on each patient, at
different frequencies. By preprocessing these images at each pixel,
we obtained a data set consisting of 160,000 points on a sphere in
a 5 dimensional Euclidean space. We used about 1600 of these as
training set, and classified the drusen in 4 classes.

While the current practice is based on spatial appearance, our
method is based on multi—spectral information.



Drusen classification




2. Super-resolution



Problem statement

Given observations of the form

L
> amexp(—ijxm) + noise,  |j| <N,

m=1

determine L, a,'s and xp,'s.

Hidden periodicities (Lanczos)

Direction finding (Krim, Pillai, - --)

Singularity detection (Eckhoff, Gelb, Tadmor, Tanner, Mh.,
Prestin, Batenkov, - - )

Parameter estimation (Potts, Tasche, Filbir, Mh., Prestin, ---)

Blind source signal separation (Flandrin, Daubeschies, Wu, Chui,
Mh., ---)



A simple observation

If ®p is a highly localized kernel (Mh.-Prestin, 1998), then
S am®PN(X — xm) & SE 1 amdx,,.






A simple observation

Original signal:
f(t) = cos(2mt)+cos(27m(0.96)t)+cos(27(0.92)t)+cos(27(0.9) t)+noise

Frequencies obtained by our method (Chui, Mh., van der Walt,
2015): .




Super-resolution

Question How large should N be?

Answer With 5 = minjzx [xj — x|, N > e~
Super-resolution (Donoho, Candés, Fernandez-Granda) How can
we do this problem with N < =17



Spherical variant

Given

L
Z am Yy k(Xm) + noise, k=1,---,d], 0<L<N,

m=1

determine L, am, Xm.
Observation
With p* = Z,anl amOx,,

L
/2*(6, k) = Z ang,k(xm).
m=1



Super-duper-resolution

Given
(¢, k) + noise, k=1,---,d}, L <N,

determine p*.
Remark The minimal separation is 0. Any solution based on finite
amount of information is beyond super-resolution.



dun(x) = on(*)(x)dx = /S ou(x-y)du' ().

For f € C(S9),

F(x)d i (x) = /S (P ()

N

< |p*|lrvEn/(f).

/S ) — 1))

Thus, uy — p* (weak-*). Also,

/Sq P(x)d,u,\,(x)—/ P(X)du*(x), Peny,.

Sa



(Courtesy: D. Batenkov)

Original measure (left), Fourier projection (mlddle) 064 (below
left), thresholded |o64| (below right).



(Courtesy: D. Batenkov)
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Original measure (left), Fourier projection (middle), o4 (below).



(Courtesy: D. Batenkov)
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Original measure (left), Fourier projection (middle), 064 (below).



3. Distance between measures



Erdos-Turan discrepancy

Erdos, Turan, 1940 If v is a signed measure on T,

(*)  Dlv]= sup [v([a,b])|-
[a,b]CT

Analogues of (*) hard for manifolds, even sphere.
Equivalently, if

eikx

G(x) = =
keZ\ {0}

/Gx— Ydv(y)

Generalization to multivariate case: Dick, Pillisheimer, 2010.

(%) Dlv] = sup




Wasserstein metric

sup{/ fdv| :
f S9

Replace maxy yese |f(x) — f(y)| <1 by ||A(f)]| < 1.
Equivalent metric:

max |f(x) — f(y)| < 1}.

x,yeSq

i

1

| [ 6o yauty

where G is Green kernel for A.




Measuring weak-* convergence

Let G:[-1,1] = R, G({) > 0forall ¢, G(¢) -~ 7P, 5> q.

Dl = | [ 6lo-vyanty

1
Theorem
Delun — 1] < N7 || 7y,
Remark The approximating measure is constructed from O(N9)

pieces of information 12*(¢, k). In terms of the amount of
information, M, the rate is O(M~5/9),



Let M= set of all Borel measures on S9 having bounded variation,
K={veM:|v|rv <1}
S ={S: K — RM weak-* continuous},

For A:RM - M, SeS,

Errm(A, S) = sup Dg[A(S(1)) — 1]
neK
(width)
du(K) = inf Errm(A, S) > cM—P/4,



Under the hood

(Mh. 2010)

|6~ [ Gyento 2)az

For function approximaton:
on(f) ~» Estimate on dist(f,G(Cm))-

For super-duper-resolution: Estimate on Dg[un — p*].



Under the hood

(Mh. 2010) If F(x) = Y f_; akG(x - z¢),

n= IST;?SLP(ZMZZ),
then
L
> lal < e P||F1.
k=1

For function approximation: Converse theorem for ZF
approximation.

For super-duper-resolution: Estimate on the widths.



Thank you.



