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Motion by mean curvature

Mean curvature flow arises in a variety of physical applications
I Related to surface tension
I A model for the formation of grain boundaries in crystal growth

Some ideas for numerical computation:
I we could parameterize the surface and compute

H = −1
2
∇ · n̂

I If the surface is implicitly defined by the equation F(x, y, z) = 0, then mean curvature can
be computed

H = −1
2
∇ ·
( ∇F
|∇F|

)
2/ 28



MBO diffusion generated motion
In 1992, Merriman, Bence, and Osher (MBO) developed an iterative method for evolving an
interface by mean curvature.

Repeat until convergence:

Step 1. Solve the Cauchy problem for the diffusion equation (heat equation)

ut = ∆u

u(x, t = 0) = χD,

with initial condition given by the indicator function χD of a domain D until time τ to obtain
the solution u(x, τ).

Step 2. Obtain a domain Dnew by thresholding:

Dnew =

{
x ∈ Rd : u(x, τ) ≥ 1

2

}
.
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How to understand the MBO method?
From pictures, one can easily see:

I diffusion quickly blunts sharp points on the boundary and
I diffusion has little effect on the flatter parts of the boundary.

Formally, consider a point P ∈ ∂D. In local polar
coordinates with the origin at P, the diffusion equation is
given by

∂u
∂t

=
1
r
∂u
∂r

+
∂2u
∂r2

+
1
r2

∂2u
∂θ2

.

Considering local symmetry, we have

∂u
∂t

=
1
r
∂u
∂r

+
∂2u
∂r2

= H
∂u
∂r

+
∂2u
∂r2

.

The 1
2 level set will move in the normal direction with

velocity given by the mean curvature, H.
Initial

t = 0.0025

t = 0.005

t = 0.01

t = 0.02
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A variational point of view: Modica+Mortola, Allen+Cahn, Ginzburg+Landau
Define the energy

Jε(u) =

∫
Ω

1
2
|∇u(x)|2 +

1
ε2

W (u(x)) dx

where W(u) = 1
4

(
u2 − 1

)2 is a double well potential.

Theorem (Modica+ Mortola, 1977) A minimizing sequence (uε) converges (along a
subsequence) to χD − χΩ\D in L1 for some D ⊂ Ω. Furthermore,

εJε(uε)→
2
√

2
3
Hd−1(∂D) as ε→ 0.

Gradient flow. The L2 gradient flow of Jε gives the Allen-Cahn equation:

ut = ∆u− 1
ε2

W′(u) in Ω.

Operator/energy splitting. Repeat the following two steps until convergence:
I Step 1. Solve the diffusion equation until time τ with initial condition u(x, t = 0) = χD

∂tu = ∆u

I Step 2. Solve the (pointwise defined!) equation until time τ :

φt = −W′(φ)/ε2, φ(x, 0) = u(x, τ), in Ω.

I Step 2*. Rescaling t̃ = ε−2t, we have as ε→ 0, ε−2τ →∞. So, Step 2 is equivalent to
thresholding:

φ(x,∞) =

{
1 if φ(x, 0) > 1/2
0 if φ(x, 0) < 1/2

.

5/ 28



Analysis, extensions, applications, connections, and computation

I Proof of convergence of the MBO method to mean curvature flow [Evans1993, Barles and
Georgelin 1995, Chambolle and Novaga 2006, Laux and Swartz 2017, Swartz and Yip
2017].

I Multi-phase problems with arbitrary surface tensions [Esedoglu and Otto 2015, Laux and
Otto 2016]

I Numerical algorithms [Ruuth 1996, Ruuth 1998]
I Adaptive methods based on NUFFT [Jiang et. al. 2017]

I Area or volume preserving interface motion [Ruuth 2003]
I Image processing [Esedoglu et al. 2006, Merkurjev et al. 2013, Wang et. al. 2017]
I Problems of anisotropic interface motion [Merriman et al. 2000, Ruuth et al. 2001,

Bonnetier et al. 2010, Elsey et al. 2016]
I Diffusion generated motion using signed distance function [Esedoglu et al. 2009]
I High order geometric motion [Esedoglu 2008]
I Nonlocal threshold dynamics method [Caffarelli and Souganidis 2010]
I Wetting problem on solid surfaces [Xu et. al. 2017],
I Graph partitioning and data clustering [van Gennip et. al. 2013]
I Auction dynamics [Jacobs et. al. 2017]
I Centroidal Voronoi Tessellation [Du 1999]
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Generalized energies
Let Ω ⊂ Rd be a bounded domain with smooth boundary.
Let T ⊂ Rk be the “target set” and f : Rk → R+ be a smooth function such that T = f−1(0).
=⇒ T is the set of global minimizers of f .

Roughly, we want f (x) ≈ dist2(x, T).

Consider the generalized variational problem,

inf
u : Ω→T

E(u) where E(u) =
1
2

∫
Ω
|∇u|2 dx

Relax the energy to obtain:

min
u∈H1(Ω;Rk)

Eε(u) where Eε(u) =

∫
Ω

1
2
|∇u|2 +

1
ε2

f (u(x)) dx.

Examples.
k T f(x) comment
1 {±1} 1

4 (x2 − 1)2 Allen-Cahn
2 S1 1

4 (|x|2 − 1)2 Ginzburg-Landau
n2 O(n) 1

4‖x
tx− In‖2

F orthogonal matrix valued fields
k coordinate axes, Σk

1
4

∑
i 6=j x2

i x2
j Dirichlet partitions

k Sk−1 1
4 (|x|2 − 1)2

RP2 Landau-de Gennes model for nematic liquid crystals
...
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A diffusion generated method for the Ginzburg-Landau model

Eε(u) =

∫
Ω

1
2
|∇u(x)|2 +

1
4ε2

(
|u(x)|2 − 1

)2
dx.

k T f(x) comment
2 S1 1

4 (|x|2 − 1)2 Ginzburg-Landau

The nearest-point projection map, ΠT : R2 → T , for T = S1 is given by

ΠT x =
x
|x| .

I S. J. Ruuth, B. Merriman, J. Xin, and S. Osher, Diffusion-Generated Motion by Mean
Curvature for Filaments, J. Nonlinear Sci. 11 (2001).

Diffusion generated method. For i = 1, 2, . . .,
I Step 1. Solve the diffusion equation until time τ

∂tu = ∆u

u(x, t = 0) = φi

I Step 2. Point-wise, apply the nearest-point projection map:

φi+1(x) = ΠT u(x, τ).
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Application: Quad meshing, joint work with Ryan Viertel (U. Utah)

Theorem [ Viertel + O. (2017)] If no separatrix of u converges to a limit cycle, then the
separatrices of U, along with ∂D partition D into a 4 sided partition.
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Examples of quad meshes
QUAD MESHING, CROSS FIELDS, AND THE GINZBURG-LANDAU THEORY 23

Fig. 12. For several di↵erent geometries (rows), we plot the (left) representation field obtained
via the MBO method (Algorithm 2), (center) the cross field and quad layout obtained from the
separatrices of the cross field, and (right) quad mesh with skeleton drawn in red.
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Orthogonal matrix valued fields
— joint work with Dong Wang (U. Utah)

Let On ⊂ Mn = Rn×n be the group of orthogonal matrices.

inf
A : Ω→On

E(A), where E(A) :=
1
2

∫
Ω
‖∇A‖2

F dx.

Relaxation:

min
A∈H1(Ω,Mn)

Eε(A), where Eε(A) :=

∫
Ω

1
2
‖∇A‖2

F +
1

4ε2
‖AtA− In‖2

F dx.

The penalty term can be written:

1
4ε2
‖AtA− In‖2

F =
1
ε2

n∑
i=1

W (σi(A)) , where W(x) =
1
4

(
x2 − 1

)2
.

Gradient Flow. The gradient flow of Eε is

∂tA = −∇AEε(A) = ∆A− ε−2A(AtA− In).

Special cases.
I For n = 1, we recover Allen-Cahn equation.
I For n = 2, if the initial condition is taken to be in SO(2) ∼= S1, we recover the complex

Ginzburg-Landau equation.
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Diffusion generated method for On valued fields

Eε(A) :=

∫
Ω

1
2
‖∇A‖2

F +
1

4ε2
‖AtA− In‖2

F dx.

k T f(x) comment
n2 O(n) 1

4‖xtx− In‖2
F orthogonal matrix valued fields

Lemma. The nearest-point projection map, ΠT : Rn×n → T , for T = On is given by

ΠT A = A(AtA)−
1
2 = UV t,

where A has the singular value decomposition, A = UΣV t .

Diffusion generated method. For i = 1, 2, . . .,
I Step 1. Solve the diffusion equation until time τ

∂tu = ∆u

u(x, t = 0) = φi

I Step 2. Point-wise, apply the nearest-point projection map:

φi+1(x) = ΠT u(x, τ).
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Computational Example I: flat torus, n = 2

closed line defect vol. const. closed line defect

parallel lines defect parallel lines defect

O(n) = SO(n) ∪ SO−(n), SO(2) ∼= S1

x is yellow ⇐⇒ det(A(x)) = 1 ⇐⇒ A(x) ∈ SO(n)
x is blue ⇐⇒ det(A(x)) = −1 ⇐⇒ A(x) ∈ SO−(n).

ind(γ) :=
1

2π
[arg v(γ(1))− arg v(γ(0))]
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Computational Example II: sphere, n = 3

shrinking on sphere vol. const. on sphere
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Computational Example III: peanut, n = 3

x(t, θ) = (3t − t3),

y(t, θ) =
1
2

√
(1 + x2)(4− x2) cos(θ),

z(t, θ) =
1
2

√
(1 + x2)(4− x2) sin(θ)

peanut with closed geodesic
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Lyapunov function for MBO iterates
Let Ω be a closed surface.
Motivated by (Esedoglu + Otto, 2015), we define the functional Eτ : H1(Ω,Mn)→ R, given by

Eτ (A) :=
1
τ

∫
Ω

n− 〈A, e∆τA〉F dx

Here, eτ∆A denotes the solution to the heat equation at time τ with initial condition at time
t = 0 given by A = A(x).

Denoting the spectral norm by ‖A‖2 = σmax(A), the convex hull of On is

Kn = conv On = {A ∈ Mn : ‖A‖2 ≤ 1}.

Lemma. The functional Eτ has the following elementary properties.

(i) For A ∈ L2(Ω,On), Eτ (A) = E(A) + O(τ).

(ii) Eτ (A) is concave.

(iii) We have
min

A∈L2(Ω,On)
Eτ (A) = min

A∈L2(Ω,Kn)
Eτ (A).

(iv) Eτ (A) is Fréchet differentiable with derivative LτA : L∞(Ω,Mn)→ R at A in the direction
B given by

LτA (B) = − 2
τ

∫
Ω
〈e∆τA,B〉F dx.
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Stability

The sequential linear programming approach to minimizing Eτ (A) subject to A ∈ L∞(Ω,Kn)
is to consider a sequence of functions {As}∞s=0 which satisfies

As+1 = arg min
A∈L∞(Ω,Kn)

LτAs
(A), A0 ∈ L∞(Ω,On) given.

Lemma. If e∆τAs = UΣV t , the solution to the linear optimization problem,

min
A∈L∞(Ω,Kn)

LτAs
(A).

is attained by the function A? = UV t ∈ L∞(Ω,On).

Thus, As ∈ L∞(Ω,On) for all s ≥ 0 and these are precisely the iterations generated by the
generalized MBO diffusion generated motion!

Theorem (Stability). [O. + Wang, 2017] The functional Eτ is non-increasing on the iterates
{As}∞s=1, i.e., Eτ (As+1) ≤ Eτ (As).

Proof. By the concavity of Eτ and linearity of LτAs
,

Eτ (As+1)− Eτ (As) ≤ LτAs
(As+1 − As) = LτAs

(As+1)− LτAs
(As).

Since As ∈ L∞(Ω,Kn), LτAs
(As+1) ≤ LτAs

(As) which implies Eτ (As+1) ≤ Eτ (As). �
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Convergence
We consider a discrete grid Ω̃ = {xi}|Ω̃|i=1 ⊂ Ω and a standard finite difference approximation of
the Laplacian, ∆̃, on Ω̃. For A : Ω̃→ On, define the discrete functional

Ẽτ (A) =
1
τ

∑
xi∈Ω̃

1− 〈Ai, (e∆̃τA)i〉F

and its linearization by

L̃τA (B) = − 2
τ

∑
xi∈Ω̃

〈Bi, (e∆̃τA)i〉F.

Theorem (Convergence for n = 1.) [O. + Wang, 2017]
Let n = 1. Non-stationary iterations of the generalized MBO diffusion generated motion
strictly decrease the value of Ẽτ and since the state space is finite, {±1}|Ω̃|, the algorithm
converges in a finite number of iterations. Furthermore, for m := e−‖∆̃‖τ , each iteration
reduces the value of J by at least 2m, so the total number of iterations is less than Ẽτ (A0)/2m.

Theorem (Convergence for n ≥ 2.) [O. + Wang, 2017]
Let n ≥ 2. The non-stationary iterations of the generalized MBO diffusion generated motion
strictly decrease the value of Ẽτ . For a given initial condition A0 : Ω̃→ On, there exists a
partition Ω̃ = Ω̃+ q Ω̃− and an S ∈ N such that for s ≥ S,

det As(xi) =

{
+1 xi ∈ Ω̃+

−1 xi ∈ Ω̃−
.

Lemma. dist
(
SO(n), SO−(n)

)
= 2.
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Dirichlet partitions

Let U ⊆ Rd with d ≥ 2 be an open bounded domain
with Lipschitz boundary.

3-partition of U ⊂ R2

We say a collection of k disjoint open sets, U1, . . . ,Uk ⊆ U is a Dirichlet k-partition of U or
simply a Dirichlet partition if it attains

inf
U`⊂U

U`∩Um=∅

k∑
`=1

λ1(U`) where λ1(U) := min
u∈H1

0(U)

‖u‖L2(U)
=1

E(u).

E(u) :=
∫

U |∇u|2 dx is the Dirichlet energy and ‖u‖L2(U) :=
(∫

U u2(x) dx
) 1

2 .

=⇒ λ1(U) is the first Dirichlet eigenvalue of the Laplacian, −∆.

Monotonicity of eigenvalues =⇒ U = ∪k
`=1U`.
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A mapping formulation of Dirichlet partitions [Cafferelli and Lin (2007)]

Consider vector valued functions u = (u1, u2, . . . , uk), that take values in the singular space,
Σk , given by the coordinate axes,

Σk :=
{

x ∈ Rk :
∑k

i 6=j x2
i x2

j = 0
}
.

The Dirichlet partition problem for U is equivalent to the mapping problem

min
{

E(u) : u ∈ H1
0(U; Σk),

∫
U

u2
`(x) dx = 1 for all ` ∈ [k]

}
,

where E(u) =
∑k
`=1

∫
U |∇u`|2 dx is the (weighted) Dirichlet energy and

H1
0(U; Σk) = {u ∈ H1

0(U;Rk) : u(x) ∈ Σk a.e.}.
We refer to minimizers u as ground states and WLOG take u ≥ 0 and quasi-continuous.

u is a ground state
⇐⇒

U = q`U` with U` = u−1
`

(
(0,∞)

)
for ` ∈ [k] is a Dirichlet partition.

Reformulation used to prove regularity results, such as C1,α-smoothness of the partition
interfaces away from a set of codimension two.

Using the TL2(Ω) framework developed by N. Garcia Trillos and D. Slepčev, together with
Todd Reeb, we proved the consistency of Dirichlet partitions [O.+Reeb (2017)].
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Diffusion generated method for computing Dirichlet partitions
— joint work with Dong Wang (U. Utah)

k T f(x) comment
k coordinate axes, Σk

1
4

∑
i 6=j x2

i x2
j Dirichlet partitions

Relaxed energy: Eε(u) =
∫
Ω

1
2 |∇u|2 + 1

4ε2

∑
i 6=j u2

i (x)u2
j (x) dx

Relaxed problem:

min
u∈H1(Ω;Rk)

Eε(u)

s.t. ‖uj‖L2(Ω) = 1

The nearest-point projection map, ΠT : Rk → T , for T = Σk is given by

(ΠT x)i =

{
xi xi = maxj xj

0 otherwise
.

Diffusion generated method. For i = 1, 2, . . .,
I Step 1. Solve the diffusion equation until time τ

∂tu = ∆u

u(x, t = 0) = φi

I Step 2. Point-wise, apply the nearest-point projection map:

φ̃(x) = ΠT u(x, τ).

I Step 3. Normalize:

φi+1(x) =
φ̃(x)

‖φ̃‖L2(Ω)

.
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Results for 2D flat tori, k = 3–9,11,12,15,16, and 20

Figure 1: From left to right and top to bottom: Dirichlet partitions on the [�1, 1]2 periodic

domain discretized by 2562 uniform grid points with k =3–9,11,12,15,16, and 20. The last

one is computed using ⌧ = 0.0625 while others are all computed using ⌧ = 0.125. The average

CPU time for each case is 3.02, 1.89, 5.09, 3.49, 6.89, 6.36, 9.89, 11.02, 8.42, 16.18, 21.45, and

35.38 seconds respectively.

17
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Results for 3D flat tori, k = 2
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Results for 3D flat tori, k = 4, tessellation by rhombic dodecahedra
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Results for 3D flat tori, k = 8, Weaire-Phelan structure

Figure 5: A k = 8 Dirichlet partition of the periodic cube, [�1, 1]3, which is similar to the

Weaire-Phelan structure. The di↵erent panels show a 3d view (top left), a vertical view

(top right), a front view (bottom left), and a side view (bottom right). There are 6 type–

one Weaire-Phelan structures and 2 type–two Weaire-Phelan structures in the partition; see

Figures 6 and 7 for plots of these structures. In each panel, we have extended the partition

periodically, so that it is easier to see how the structures fit together. In this experiment,

the cube is discretized by 1283 uniform grid points and ⌧ = 0.0625. The CPU time for this

experiment is 1200 seconds.

20
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Results for 3D flat tori, k = 12, Kelvin’s structure composed of truncated
octahedra

Figure 6: (left) A type–one Weaire-Phelan structure, (center) a vertical view, and (right)

a front view. The side view is same as the front view.

Figure 7: (left) A type–two Weaire-Phelan structure, (center) a vertical view, and (right)

a front view. The side view is same as the vertical view.

Figure 8: (left) A k = 12 Dirichlet partition of the periodic cube, [�1, 1]3, by equal trun-

cated octahedra, similar to Kelvin’s structure. The partition has been periodically extended.

(center) A vertical view. (right) A side view. The front view is same as the vertical view.

In this experiment, the cube is discretized by 1283 uniform grid points and ⌧ = 0.0625. The

CPU time for this experiment is 3556 seconds.

21
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Results for 4D flat tori, k = 8, 24-cell honeycomb

Figure 9: A k = 8 Dirichlet partition of the periodic tesseract, [�1, 1]4, by 24-cells. The

four columns correspond to the slides perpendicular to the x1�, x2�, x3�, and x4�axis

respectively. The eight rows correspond to the slices at xj =-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5,

0.75, respectively. The CPU time was 9803 seconds.
22
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Discussion and future directions for generalized MBO methods
I We only considered a single matrix valued field that has two “phases” given by when the

determinant is positive or negative. It would be very interesting to extend this work to the
mutli-phase problem as was accomplished for n = 1 in [Esedoglu+Otto, 2015].

I For O(n) valued fields with n ≥ 2, the motion law for the interface is unknown.
I For n = 2 on a two-dimensional flat torus, further analysis regarding the winding number

of the field is required. Is it possible to determine the final solution based on the winding
number of the initial field?

I For problems with a non-trivial boundary condition, it not obvious how to adapt the
Lyapunov functional.

Thanks! Questions? Email: osting@math.utah.edu
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