An inverse problem perspective on machine learning

Lorenzo Rosasco
University of Genova
Massachusetts Institute of Technology
Istituto Italiano di Tecnologia
lcsl.mit.edu

Feb 9th, 2018 - Inverse Problems and Machine Learning Workshop, CM+X Caltech

Today selection

- Classics:
"Learning as an inverse problem"
- Latest releases:
"Kernel methods as a test bed for algorithm design"

Outline

Learning theory 2000

Learning as an inverse problem

Regularization

Recent advances

What's learning

What's learning

What's learning

Learning is about inference not interpolation

Statistical Machine Learning (ML)

- (X, Y) a pair of random variables in $\mathcal{X} \times \mathbb{R}$.
- $L: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ a loss function.
- $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$

Problem: Solve

$$
\min _{f \in \mathcal{H}} \mathbb{E}[L(f(X), Y)]
$$

given only $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, a sample of n i.i. copies of (X, Y).

ML theory around 2000-2010

- All algorithms are ERM (empirical risk minimization)

$$
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L\left(f\left(x_{i}\right), y_{i}\right)
$$

[Vapnik '96]

- Emphasis on empirical process theory...

$$
\mathbb{P}\left(\sup _{f \in \mathcal{H}}\left|\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(X_{i}\right), Y_{i}\right)-\mathbb{E}[L(f(X), Y)]\right|>\epsilon\right)
$$

[Vapnik, Chervonenkis,'71 Dudley, Giné, Zinn '94]

- ...and complexity measures, e.g. Gaussian/Rademacher complexities

$$
C(\mathcal{H})=\mathbb{E} \sup _{f \in \mathcal{H}} \sum_{i=1}^{n} \sigma_{i} f\left(X_{i}\right)
$$

Around the same time

Cucker and Smale, On the mathematical foundations of learning theory, AMS

- Caponnetto, De Vito and R. Verri, Learning as an Inverse Problem, JMLR
- Smale, Zhou, Shannon sampling and function reconstruction from point values, Bull. AMS

Outline

Learning theory 2000

Learning as an inverse problem

Regularization

Recent advances

Inverse Problems (IP)

- $A: \mathcal{H} \rightarrow \mathcal{G}$ bounded linear operator, between Hilbert spaces
- $g \in \mathcal{G}$

Problem: Find f solving

$$
A f=g
$$

assuming A and g_{δ} are given, with $\left\|g-g_{\delta}\right\| \leq \delta$

III-posedeness

- Existence: $g \notin \operatorname{Range}(A)$
- Uniqueness: $\operatorname{Ker}(A) \neq \emptyset$
- Stability: $\left\|A^{\dagger}\right\|=\infty$ (large is also a mess)

$$
\mathcal{O}=\underset{\mathcal{H}}{\operatorname{argmin}}\|A f-g\|^{2}, \quad \quad f^{\dagger}=A^{\dagger} g=\min _{\mathcal{O}}\|f\|
$$

Is machine learning an inverse problem?

- (X, Y)
- $L: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$
- $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$

Solve

$$
\min _{f \in \mathcal{H}} \mathbb{E}[L(f(X), Y)]
$$

- $A: \mathcal{H} \rightarrow \mathcal{G}$
- $g \in \mathcal{G}$

Find f solving

$$
A f=g
$$

given A and g_{δ} with $\left\|g-g_{\delta}\right\| \leq \delta$

Actually yes, under some assumptions.

Key assumptions: least squares and RKHS

Assumption

$$
L(f(x), y)=(f(x)-y)^{2}
$$

Assumption

- $(\mathcal{H},\langle\cdot, \cdot\rangle)$ is a Hilbert space (real, separable)
- continuous evaluation functionals, for all $x \in \mathcal{X}$, let $e_{x}: \mathcal{H} \rightarrow \mathbb{R}$, with $e_{x}(f)=f(x)$, then

$$
\left|e_{x}(f)-e_{x}\left(f^{\prime}\right)\right| \lesssim\left\|f-f^{\prime}\right\|
$$

Key assumptions: least squares and RKHS

Assumption

$$
L(f(x), y)=(f(x)-y)^{2}
$$

Assumption

- $(\mathcal{H},\langle\cdot, \cdot\rangle)$ is a Hilbert space (real, separable)
- continuous evaluation functionals, for all $x \in \mathcal{X}$, let $e_{x}: \mathcal{H} \rightarrow \mathbb{R}$, with $e_{x}(f)=f(x)$, then

$$
\left|e_{x}(f)-e_{x}\left(f^{\prime}\right)\right| \lesssim\left\|f-f^{\prime}\right\|
$$

Implications

- $\|f\|_{\infty} \lesssim\|f\|$
- $\exists k_{x} \in \mathcal{H}$ such that

$$
f(x)=\left\langle f, k_{x}\right\rangle
$$

Interpolation and sampling operator

[Bertero, De mol, Pike '85,'88]

$$
\begin{gathered}
f\left(x_{i}\right)=\left\langle f, k_{x_{i}}\right\rangle=y_{i}, \quad i=1, \ldots, n \\
\Downarrow \\
S_{n} f=\mathbf{y}
\end{gathered}
$$

Sampling operator: $S_{n}: \mathcal{H} \rightarrow \mathbb{R}^{n}$,

$$
\left(S_{n} f\right)^{i}=\left\langle f, k_{x_{i}}\right\rangle, \quad \forall i=1, \ldots, n
$$

Learning and restriction operator

[Caponnetto, De Vito, R. '05]

$f_{\rho}(x)=\int d \rho(x, y) y \rho$-almost surely.
$L^{2}(\mathcal{X}, \rho)=\left\{\left.f \in \mathbb{R}^{\mathcal{X}}\left|\|f\|_{\rho}^{2}=\int d \rho\right| f(x)\right|^{2}<\infty\right\}$

Restriction operator: $S_{\rho}: \mathcal{H} \rightarrow L^{2}(\mathcal{X}, \rho)$, $\left(S_{\rho} f\right)(x)=\left\langle f, k_{x}\right\rangle, \quad \rho$-almost surely.

Learning as an inverse problem

Inverse problem
Find f solving

$$
S_{\rho} f=f_{\rho}
$$

given S_{n} and $\mathbf{y}_{n}=\left(y_{1}, \ldots, y_{n}\right)$.

Learning as an inverse problem

Inverse problem
Find f solving

$$
S_{\rho} f=f_{\rho}
$$

given S_{n} and $\mathbf{y}_{n}=\left(y_{1}, \ldots, y_{n}\right)$.

Least squares

$$
\min _{\mathcal{H}}\left\|S_{\rho} f-f_{\rho}\right\|_{\rho}^{2}, \quad \quad\left\|S_{\rho} f-f_{\rho}\right\|_{\rho}^{2}=\mathbb{E}(f(X)-Y)^{2}-\mathbb{E}\left(f_{\rho}(X)-Y\right)^{2}
$$

Let's see what we got

- Noise model
- Integral operators \& covariance operators
- Kernels

Noise model

Ideal
$S_{\rho} f=f_{\rho}$
$S_{\rho}^{*} S_{\rho} f=S_{\rho}^{*} f_{\rho}$

Noise model

$$
\left\|S_{n}^{*} \mathbf{y}-S_{\rho}^{*} f_{\rho}\right\| \leq \delta_{1}
$$

$$
\left\|S_{\rho}^{*} S_{\rho}-S_{n}^{*} S_{n}\right\| \leq \delta_{2}
$$

Integral and covariance operators operators

- Extension operator $S_{\rho}^{*}: L^{2}(\mathcal{X}, \rho) \rightarrow \mathcal{H}$

$$
S_{\rho}^{*} f\left(x^{\prime}\right)=\int d \rho(x) k\left(x^{\prime}, x\right) f(x)
$$

where $k\left(x, x^{\prime}\right)=\left\langle k_{x}, k_{x}^{\prime}\right\rangle$ is pos.def.

- Covariance operator $S_{\rho}^{*} S_{\rho}: \mathcal{H} \rightarrow \mathcal{H}$

$$
S_{\rho}^{*} S_{\rho}=\int d \rho(x) k_{x} \otimes k_{x^{\prime}}
$$

Kernels

Choosing a RKHS implies choosing a representation.

Theorem (Moore-Aronzaijn)

Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, pos.def., then the completion of

$$
\left\{f \in \mathbb{R}^{\mathcal{X}} \mid f=\sum_{j=1}^{N} c_{i} k_{x_{i}}, c_{1}, \ldots, c_{N} \in \mathbb{R}, x_{1}, \ldots, x_{N} \in \mathcal{X}, N \in \mathbb{N}\right\}
$$

w.r.t. $\left\langle k_{x}, k_{x}^{\prime}\right\rangle=k\left(x, x^{\prime}\right)$ is a RKHS.

Kernels

If $K\left(x, x^{\prime}\right)=x^{\top} x^{\prime}$, then,

- S_{n} is the n by D data matrix (S_{ρ} infinite data matrix)
- $S_{n}^{*} S_{n}$ and $S_{\rho}^{*} S_{\rho}$ are the empirical and true covariance operators

Kernels

If $K\left(x, x^{\prime}\right)=x^{\top} x^{\prime}$, then,

- S_{n} is the n by D data matrix (S_{ρ} infinite data matrix)
- $S_{n}^{*} S_{n}$ and $S_{\rho}^{*} S_{\rho}$ are the empirical and true covariance operators

Other kernels:

- $K\left(x, x^{\prime}\right)=\left(1+x^{\top} x^{\prime}\right)^{p}$
- $K\left(x, x^{\prime}\right)=e^{-\left\|x-x^{\prime}\right\|^{2} \gamma}$
- $K\left(x, x^{\prime}\right)=e^{-\left\|x-x^{\prime}\right\| \gamma}$

What now?

Steal

Outline

Learning theory 2000

Learning as an inverse problem

Regularization

Recent advances

Tikhonov aka ridge regression

$$
f_{n}^{\lambda}=\left(S_{n}^{*} S_{n}+\lambda n I\right)^{-1} S_{n}^{*} y
$$

Tikhonov aka ridge regression

$$
f_{n}^{\lambda}=\left(S_{n}^{*} S_{n}+\lambda n I\right)^{-1} S_{n}^{*} \mathbf{y}=S_{n}^{*}(\underbrace{S_{n} S_{n}^{*}}_{K_{n}}+\lambda n I)^{-1} \mathbf{y}
$$

Statistics

Theorem (Caponnetto De Vito '05)
Assume $K(X, X),|Y| \leq 1$ a.s. and $f^{\dagger} \in \operatorname{Range}\left(S_{\rho} S_{\rho}^{*}\right)^{r}, 1 / 2<r<1$. If $\lambda_{n}=n^{-\frac{1}{2 r+1}}$

$$
\mathbb{E}\left[\left\|S f_{n}^{\lambda_{n}}-f^{\dagger}\right\|_{\rho}^{2}\right] \lesssim n^{-\frac{2 r}{2 r+1}}
$$

Statistics

Theorem (Caponnetto De Vito '05)
Assume $K(X, X),|Y| \leq 1$ a.s. and $f^{\dagger} \in \operatorname{Range}\left(S_{\rho} S_{\rho}^{*}\right)^{r}, 1 / 2<r<1$. If $\lambda_{n}=n^{-\frac{1}{2 r+1}}$

$$
\mathbb{E}\left[\left\|S f_{n}^{\lambda_{n}}-f^{\dagger}\right\|_{\rho}^{2}\right] \lesssim n^{-\frac{2 r}{2 r+1}}
$$

Proof

$$
\begin{aligned}
& \forall \lambda>0, \mathbb{E}\left[\left\|S f_{n}^{\lambda}-f_{\rho}\right\|_{\rho}^{2}\right] \\
& \mathbb{E}\left[\delta_{1}\right], \mathbb{E}\left[\delta_{2}\right] \lesssim \frac{1}{\lambda}\left(\delta_{1}+\delta_{2}\right)+\lambda^{2 r} \\
& \sqrt{n}
\end{aligned}
$$

Iterative regularization

From the Neumann series. . .

$$
f_{n}^{t}=\gamma \sum_{j=0}^{t-1}\left(I-\gamma S_{n}^{*} S_{n}\right)^{j} S_{n}^{*} \mathbf{y}
$$

Iterative regularization

From the Neumann series. . .

$$
f_{n}^{t}=\gamma \sum_{j=0}^{t-1}\left(I-\gamma S_{n}^{*} S_{n}\right)^{j} S_{n}^{*} \mathbf{y}=\gamma S_{n}^{*} \sum_{j=0}^{t-1}(I-\gamma \underbrace{S_{n} S_{n}^{*}}_{K_{n}})^{j} \mathbf{y}
$$

Iterative regularization

From the Neumann series...

$$
f_{n}^{t}=\gamma \sum_{j=0}^{t-1}\left(I-\gamma S_{n}^{*} S_{n}\right)^{j} S_{n}^{*} \mathbf{y}=\gamma S_{n}^{*} \sum_{j=0}^{t-1}(I-\gamma \underbrace{S_{n} S_{n}^{*}}_{K_{n}})^{j} \mathbf{y}
$$

... to gradient descent

$$
f_{n}^{t}=f_{n}^{t-1}-\gamma S_{n}^{*}\left(S_{n} f_{n}^{t-1}-\mathbf{y}\right) \quad c_{n}^{t}=c_{n}^{t-1}-\gamma\left(K_{n} c_{n}^{t-1}-\mathbf{y}\right)
$$

Iterative regularization statistics

Theorem (Bauer, Pereverzev, R. '07)
Assume $K(X, X),|Y| \leq 1$ a.s. and $f^{\dagger} \in \operatorname{Range}\left(S_{\rho} S_{\rho}^{*}\right)^{r}, 1 / 2<r<\infty$. If $t_{n}=n^{\frac{1}{2 r+1}}$

$$
\mathbb{E}\left[\left\|S f_{n}^{t_{n}}-f^{\dagger}\right\|_{\rho}^{2}\right] \lesssim n^{-\frac{2 r}{2 r+1}}
$$

Iterative regularization statistics

Theorem (Bauer, Pereverzev, R. '07)
Assume $K(X, X),|Y| \leq 1$ a.s. and $f^{\dagger} \in \operatorname{Range}\left(S_{\rho} S_{\rho}^{*}\right)^{r}, 1 / 2<r<\infty$. If $t_{n}=n^{\frac{1}{2 r+1}}$

$$
\mathbb{E}\left[\left\|S f_{n}^{t_{n}}-f^{\dagger}\right\|_{\rho}^{2}\right] \lesssim n^{-\frac{2 r}{2 r+1}}
$$

Proof

$$
\begin{gathered}
\forall \lambda>0, \quad \mathbb{E}\left[\left\|S f_{n}^{t}-f_{\rho}\right\|_{\rho}^{2}\right] \lesssim t\left(\delta_{1}+\delta_{2}\right)+\frac{1}{t^{2 r}} \\
\mathbb{E}\left[\delta_{1}\right], \mathbb{E}\left[\delta_{2}\right] \lesssim \frac{1}{\sqrt{n}}
\end{gathered}
$$

Tikhonov vs iterative regularization

- Same statistical properties...
- ... but time complexities are different $O\left(n^{3}\right)$ vs $O\left(n^{2} n^{\frac{1}{2 r+1}}\right)$,
- Iterative regularization provides a bridge between statistics and computations.
- Kernel methods become a test bed for algorithmic solutions.

Computational regularization

Tikhonov

$$
\text { time } O\left(n^{3}\right)+\text { space } O\left(n^{2}\right) \text { for } 1 / \sqrt{n} \text { learning bound }
$$

Computational regularization

Tikhonov

$$
\text { time } O\left(n^{3}\right)+\text { space } O\left(n^{2}\right) \text { for } 1 / \sqrt{n} \text { learning bound }
$$

Iterative regularization

$$
\text { time } O\left(n^{2} \sqrt{n}\right)+\text { space } O\left(n^{2}\right) \text { for } 1 / \sqrt{n} \text { learning bound }
$$

Outline

```
Learning theory }200
Learning as an inverse problem
Regularization
```

Recent advances

Steal from optimization

Acceleration

- Conjugate gradient
[Blanchard, Kramer '96]
- Chebyshev method
[Bauer, Pervezev. R. '07]
- Nesterov acceleration (Nesterov, '83)
[Salzo, R. '18]
Stochastic gradient
- Single pass stochastic gradient
[Tarres, Yao, '05, Pontil, Ying, '09, Bach, Dieuleveut, Flammarion, '17]
- Multi-pass incremental gradient
[Villa, R. '15]
- Multi-pass stochastic gradient with mini-batches.

Computational regularization

Iterative regularization

$$
\text { time } O\left(n^{2} \sqrt{n}\right)+\text { space } O\left(n^{2}\right) \text { for } 1 / \sqrt{n} \text { learning bound }
$$

Stochastic iterative regularization

$$
\text { time } O\left(n^{2}\right)+\text { space } O\left(n^{2}\right) \text { for } 1 / \sqrt{n} \text { learning bound }
$$

Can we do better? How about memory?

Regularization with projection and preconditioning

[Halko, Martinsson, Tropp '09]

$$
\begin{aligned}
& \left(K_{n M}^{\top} K_{n M}+\lambda n K_{M M}\right) c=K_{n M}^{\top} \mathbf{y} \\
& B B^{\top}=\left(\frac{n}{M} K_{M M}^{2}+\lambda n K_{M M}\right)^{-1}
\end{aligned}
$$

FALKON [Rudi, Carratino, R. '17], see also [Ma, Belkin '17]

$$
\begin{gathered}
c_{t}=B \beta_{t} \\
\beta_{t}=\beta_{t-1}-\frac{\gamma}{n} B^{\top}\left[K_{n M}^{\top}\left(K_{n M} B \beta_{t-1}-\mathbf{y}\right)+\lambda n K_{M M} B \beta_{t-1}\right]
\end{gathered}
$$

Falkon statistics

Theorem (Rudi, Carratino, R. '17)
Assume $K(X, X),|Y| \leq 1$ a.s. and $f^{\dagger} \in \operatorname{Range}\left(S_{\rho} S_{\rho}^{*}\right)^{r}, 1 / 2<r<\infty$. If

$$
\lambda_{n}=n^{-\frac{1}{2 r+1}}, \quad M_{n}=n^{\frac{1}{2 r+1}}, \quad t_{n}=\log n
$$

then

$$
\mathbb{E}\left[\left\|S f_{n}^{\lambda_{n}, t_{n}, M_{n}}-f^{\dagger}\right\|_{\rho}^{2}\right] \lesssim n^{-\frac{2 r}{2 r+1}}
$$

Computational regularization

time $O\left(n^{2}\right)+$ space $O\left(n^{2}\right)$ for $1 / \sqrt{n}$ learning bound

time $\tilde{O}(n \sqrt{n})+$ space $O(n \sqrt{n})$ for $1 / \sqrt{n}$ learning bound

Some results

	MillionSongs			YELP		TIMIT	
	MSE	Relative error	Time(s)	RMSE	Time (m)	c-err	Time (h)
FALKON	80.30	4.51×10^{-3}	55	0.833	20	32.3\%	1.5
Prec. KRR	-	4.58×10^{-3}	$289{ }^{\dagger}$	-	-	-	-
Hierarchical	-	4.56×10^{-3}	293*	-	-	-	-
D\&C	80.35	-	737*	-	-	-	-
Rand. Feat.	80.93	-	772*	-	-	-	-
Nyström	80.38	${ }^{-}$	876*	-	-	-	-
ADMM R. F.	-	5.01×10^{-3}	$958{ }^{\dagger}$	-	-	-	-
BCD R. F.	-	-	-	0.949	42^{\ddagger}	34.0\%	1.7^{\ddagger}
BCD Nyström	-	-	-	0.861	60^{\ddagger}	33.7\%	$1.7{ }^{\ddagger}$
KRR	-	4.55×10^{-3}	-	0.854	500^{\ddagger}	33.5\%	$8.3{ }^{\ddagger}$
EigenPro	-	-	-	-	-	32.6\%	$3.9{ }^{2}$
Deep NN	-	-	-	-	-	32.4\%	-
Sparse Kernels	-	-	-	-	-	30.9\%	-
Ensemble	-	-	-	-	-	33.5\%	-

Conclusions

Contribution

- Learning as an inverse problems
- Computational regularization: statistics meets numerics

Future work

- Scaling things up...
- Regularization with projections (quadrature, Galerkin methods)
- Connection to PDE/integral equations: exploit more structure
- Structured prediction/deep learning
- Semisupervised/unsupervised learning
- Embedding and compressed learning

