Nonparametric regression using deep neural networks with ReLU activation function

Johannes Schmidt-Hieber

February 2018
Caltech

- Many impressive results in applications ...
- Lack of theoretical understanding ...

Algebraic definition of a deep net

Network architecture (L, \mathbf{p}) consists of

- a positive integer L called the number of hidden layers/depth
- width vector $\mathbf{p}=\left(p_{0}, \ldots, p_{L+1}\right) \in \mathbb{N}^{L+2}$.

Neural network with network architecture (L, \mathbf{p})

$$
f: \mathbb{R}^{p_{0}} \rightarrow \mathbb{R}^{p_{L+1}}, \quad \mathbf{x} \mapsto f(\mathbf{x})=W_{L+1} \sigma_{\mathbf{v}_{L}} W_{L} \sigma_{\mathbf{v}_{L-1}} \cdots W_{2} \sigma_{\mathbf{v}_{1}} W_{1} \mathbf{x}
$$

Network parameters:

- W_{i} is a $p_{i} \times p_{i-1}$ matrix
- $\mathbf{v}_{i} \in \mathbb{R}^{p_{i}}$

Activation function:

- We study the ReLU activation function $\sigma(x)=\max (x, 0)$.

Equivalence to graphical representation

Figure: Representation as a direct graph of a network with two hidden layers $L=2$ and width vector $\mathbf{p}=(4,3,3,2)$.

Characteristics of modern deep network architectures

- Networks are deep
- version of ResNet with 152 hidden layers
- networks become deeper
- Number of network parameters is larger than sample size
- AlexNet uses 60 million parameters for 1.2 million training samples
- There is some sort of sparsity on the parameters
- ReLU activation function $(\sigma(x)=\max (x, 0))$

The large parameter trick

- If we allow the network parameters to be arbitrarily large, then we can approximate the indicator function via

$$
x \mapsto \sigma(a x)-\sigma(a x-1)
$$

- it is common in approximation theory to use networks with network parameters tending to infinity
- In our analysis, we restrict all network parameters in absolute value by one

Statistical analysis

- we want to study the statistical performance of a deep network
- \rightsquigarrow do nonparametric regression
- we observe n i.i.d. copies $\left(\mathbf{X}_{1}, Y_{1}\right), \ldots,\left(\mathbf{X}_{n}, Y_{n}\right)$,

$$
Y_{i}=f\left(\mathbf{X}_{i}\right)+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathcal{N}(0,1)
$$

- $\mathbf{X}_{i} \in \mathbb{R}^{d}, Y_{i} \in \mathbb{R}$,
- goal is to reconstruct the function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- has been studied extensively (kernel smoothing, wavelets, splines, ...)

The estimator

- denote by $\mathcal{F}(L, \mathbf{p}, s)$ the class of all networks with
- architecture (L, \mathbf{p})
- number of active (e.g. non-zero) parameters is s
- choose network architecture (L, \mathbf{p}) and sparsity s
- least-squares estimator

$$
\widehat{f}_{n} \in \underset{f \in \mathcal{F}(L, \mathbf{p}, s)}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-f\left(\mathbf{X}_{i}\right)\right)^{2} .
$$

- this is the global minimizer [not computable]
- prediction error

$$
R\left(\widehat{f}_{n}, f\right):=E_{f}\left[\left(\widehat{f}_{n}(\mathbf{X})-f(\mathbf{X})\right)^{2}\right]
$$

with $\mathbf{X} \stackrel{\mathcal{D}}{=} \mathbf{X}_{1}$ being independent of the sample

- study the dependence of n on $R\left(\widehat{f}_{n}, f\right)$

Function class

- classical idea: assume that regression function is β-smooth
- optimal nonparametric estimation rate is $n^{-2 \beta /(2 \beta+d)}$
- suffers from curse of dimensionality
- to understand deep learning this setting is therefore useless
- \rightsquigarrow make a good structural assumption on f

Hierarchical structure

- Important: Only few objects are combined on deeper abstraction level
- few letters in one word
- few word in one sentence

Function class

- We assume that

$$
f=g_{q} \circ \ldots \circ g_{0}
$$

with

- $g_{i}: \mathbb{R}^{d_{i}} \rightarrow \mathbb{R}^{d_{i+1}}$.
- each of the d_{i+1} components of g_{i} is β_{i}-smooth and depends only on t_{i} variables
- t_{i} can be much smaller than d_{i}
- we show that the rate depends on the pairs

$$
\left(t_{i}, \beta_{i}\right), \quad i=0, \ldots, q
$$

Example

Example: Additive models

- In an additive model

$$
f(\mathbf{x})=\sum_{i=1}^{d} f_{i}\left(x_{i}\right)
$$

- This can be written as $f=g_{1} \circ g_{0}$ with

$$
g_{0}(\mathbf{x})=\left(f_{i}\left(x_{i}\right)\right)_{i=1, \ldots, d}, \quad g_{2}(\mathbf{y})=\sum_{i=1}^{d} y_{i}
$$

Hence, $t_{0}=1, d_{1}=t_{2}=d$.

- Decomposes additive functions in
- one function that can be non-smooth but every component is one-dimensional
- one function that has high-dimensional input but the function is smooth

The effective smoothness

For nonparametric regression,

$$
f=g_{q} \circ \ldots \circ g_{0}
$$

Effective smoothness:

$$
\beta_{i}^{*}:=\beta_{i} \prod_{\ell=i+1}^{q}\left(\beta_{\ell} \wedge 1\right)
$$

β_{i}^{*} is the smoothness induced on f by g_{i}

Main result

Theorem: If
(i) depth $\asymp \log n$
(ii) width $\asymp n^{C}$, with $C \geq 1$
(iii) network sparsity $\asymp \max _{i=0, \ldots, q} n^{\frac{t_{i}}{2 \beta_{i}^{*}+t_{i}}} \log n$

Then,

$$
R(\widehat{f}, f) \lesssim \max _{i=0, \ldots, q} n^{-\frac{2 \beta_{i}^{*}}{2 \beta_{i}^{*}+t_{i}}} \log ^{2} n
$$

Remarks on the rate

Rate:

$$
R(\widehat{f}, f) \lesssim \max _{i=0, \ldots, q} n^{-\frac{2 \beta_{i}^{*}}{2 \beta_{i}^{*}+t_{i}}} \log ^{2} n
$$

Remarks:

- t_{i} can be seen as an effective dimension
- strong heuristic that this is the optimal rate (up to $\log ^{2} n$)
- other methods such as wavelets likely do not achieve these rates

Consequences

- the assumption that depth $\asymp \log n$ appears naturally
- in particular the depth scales with the sample size
- the networks can have much more parameters than the sample size
- important for statistical performance is not the size but the amount of regularization
- here the number of active parameters

Consequences (ctd.)

paradox:

- good rate for all smoothness indices
- existing piecewise linear methods only give good rates up to smoothness two
- Here the non-linearity of the function class helps
\rightsquigarrow non-linearity is essential!!!

On the proof

- Oracle inequality (roughly)

$$
R(\widehat{f}, f) \lesssim \inf _{f * \in \mathcal{F}(L, \mathbf{p}, s, F)}\left\|f^{*}-f\right\|_{\infty}^{2}+\frac{s \log n}{n}
$$

- shows the trade-off between approximation and the number of active parameters s
- Approximation theory:
- builds on work by Telgarsky (2016), Liang and Srikant (2016), Yarotski (2017)
- network parameters bounded by one
- explicit bounds on network architecture and sparsity

Additive models (ctd.)

- Consider again the additive model

$$
f(\mathbf{x})=\sum_{i=1}^{d} f_{i}\left(x_{i}\right)
$$

- suppose that each function f_{i} is β-smooth
- the theorem gives the rate

$$
R(\widehat{f}, f) \lesssim n^{-\frac{2 \beta}{2 \beta+1}} \log ^{2} n
$$

- this rate is known to be optimal up to the $\log ^{2} n$-factor

The function class considered here contains other structural constraints as a special case such a generalized additive models and it can be shown that the rates are optimal up to the $\log ^{2} n$-factor

Extensions

Some extensions are useful. To name a few

- high-dimensional input
- include stochastic gradient descent
- classification
- CNNs, recurrent neural networks, ...

