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» Many impressive results in applications . ..

» Lack of theoretical understanding ...
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Algebraic definition of a deep net

Network architecture (L, p) consists of
» a positive integer L called the number of hidden layers/depth
» width vector p = (po, ..., pr+1) € N2,

Neural network with network architecture (L, p)
f:RPO — RPLHL X f(X) = WL+IUVL WLO“,F1 cee WQO‘\,1 Wix,

Network parameters:
» W, is a p; X pj_1 matrix
> v; € RPi

Activation function:

» We study the ReLU activation function o(x) = max(x,0).



Equivalence to graphical representation
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Figure: Representation as a direct graph of a network with two hidden
layers L = 2 and width vector p = (4, 3,3, 2).
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Characteristics of modern deep network architectures

» Networks are deep
» version of ResNet with 152 hidden layers
» networks become deeper

» Number of network parameters is larger than sample size
» AlexNet uses 60 million parameters for 1.2 million training

samples
» There is some sort of sparsity on the parameters
» RelLU activation function (o(x) = max(x,0))
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The large parameter trick

» If we allow the network parameters to be arbitrarily large, then
we can approximate the indicator function via

x +— o(ax) —o(ax — 1)

0.0 04 08

» it is common in approximation theory to use networks with
network parameters tending to infinity

» In our analysis, we restrict all network parameters in
absolute value by one
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Statistical analysis

» we want to study the statistical performance of a deep
network

» ~~ do nonparametric regression

» we observe n i.i.d. copies (X1, Y1),...,(Xn, Ya),

Y, = f(X,') +¢&i, & NN(O, 1)

» X; eRY, Y; R,
» goal is to reconstruct the function f : RY — R

» has been studied extensively (kernel smoothing, wavelets,
splines, ...)

~
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The estimator

» denote by F(L,p,s) the class of all networks with

» architecture (L, p)
» number of active (e.g. non-zero) parameters is s

» choose network architecture (L, p) and sparsity s
» least-squares estimator
n
-~ . 2
f, € argmin Z (Y; — f(X,-)) .
feF(L,p,s) i—1
» this is the global minimizer [not computable]
» prediction error

~

R(fa, F) = E¢ [(f2(X) — £(X))],

with X 2 X; being independent of the sample
» study the dependence of n on R(f, f)



Function class

v

classical idea: assume that regression function is S-smooth

optimal nonparametric estimation rate is n—28/(26+d)

v

v

suffers from curse of dimensionality

v

to understand deep learning this setting is therefore useless

» ~~ make a good structural assumption on f
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Hierarchical structure

strokes —» letters —» words —» sentences

/
\[ N IN | AM IN LA.

» Important: Only few objects are combined on deeper
abstraction level
» few letters in one word
» few word in one sentence
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Function class

» We assume that

f=gq0...080

with
» g RI — R,
» each of the dj;1 components of g; is 5;-smooth and depends
only on t; variables
» t; can be much smaller than dj;
» we show that the rate depends on the pairs

(ti75I)> ’.:Ov“wq’
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Example
Example: Additive models

» In an additive model

d

Fx) = 3 filx)

i=1
» This can be written as f = gy o gg with

d

go(x) = (i(x))i=1...a»  &(¥) =D yi-

i=1

Hence, to =1,di = th =d.
» Decomposes additive functions in
» one function that can be non-smooth but every component is
one-dimensional

» one function that has high-dimensional input but the function
is smooth

12/20



The effective smoothness

For nonparametric regression,

f=gq0...080

Effective smoothness:

q

B =6 [[ Ben).

l=i+1

B is the smoothness induced on f by g;
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Main result

Theorem: If
(i) depth < logn
(i) width < n¢, with C > 1

£

(iii) network sparsity < max;—q, . qn>"

Then,

log n

28}

R(f,f) < max n 2%t log? n.
i=0,...,q

20



Remarks on the rate

Rate:

28]

R(f,f) < max n %7 log?n.
i=0,...,q

Remarks:
» t; can be seen as an effective dimension
» strong heuristic that this is the optimal rate (up to log® n)

» other methods such as wavelets likely do not achieve these
rates
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Consequences

» the assumption that depth = log n appears naturally

» in particular the depth scales with the sample size

» the networks can have much more parameters than the
sample size

» important for statistical performance is not the size but
the amount of regularization

» here the number of active parameters
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Consequences (ctd.)

paradox:
» good rate for all smoothness indices

» existing piecewise linear methods only give good rates up to
smoothness two

» Here the non-linearity of the function class helps

~> non-linearity is essential!!!
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On the proof

» Oracle inequality (roughly)

RIF.E) S inf || —f|° + slogn
f*eF(L,p,s,F) 0 n

» shows the trade-off between approximation and the number of
active parameters s

» Approximation theory:
» builds on work by Telgarsky (2016), Liang and Srikant (2016),
Yarotski (2017)
» network parameters bounded by one
» explicit bounds on network architecture and sparsity
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Additive models (ctd.)

» Consider again the additive model

d

Fx) = 3 i)

i=1

» suppose that each function f; is S-smooth

» the theorem gives the rate
R(f,f) < n 25+ log” n.
» this rate is known to be optimal up to the log? n-factor

The function class considered here contains other structural
constraints as a special case such a generalized additive models and
it can be shown that the rates are optimal up to the log? n-factor
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Extensions

Some extensions are useful. To name a few
» high-dimensional input
» include stochastic gradient descent
» classification

» CNNs, recurrent neural networks, ...
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