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I Many impressive results in applications . . .

I Lack of theoretical understanding . . .
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Algebraic definition of a deep net

Network architecture (L,p) consists of

I a positive integer L called the number of hidden layers/depth

I width vector p = (p0, . . . , pL+1) ∈ NL+2.

Neural network with network architecture (L,p)

f : Rp0 → RpL+1 , x 7→ f (x) = WL+1σvLWLσvL−1
· · ·W2σv1W1x,

Network parameters:

I Wi is a pi × pi−1 matrix

I vi ∈ Rpi

Activation function:

I We study the ReLU activation function σ(x) = max(x , 0).
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Equivalence to graphical representation

Figure: Representation as a direct graph of a network with two hidden
layers L = 2 and width vector p = (4, 3, 3, 2).

4 / 20



Characteristics of modern deep network architectures

I Networks are deep
I version of ResNet with 152 hidden layers
I networks become deeper

I Number of network parameters is larger than sample size
I AlexNet uses 60 million parameters for 1.2 million training

samples

I There is some sort of sparsity on the parameters

I ReLU activation function (σ(x) = max(x , 0))
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The large parameter trick
I If we allow the network parameters to be arbitrarily large, then

we can approximate the indicator function via

x 7→ σ(ax)− σ(ax − 1)

I it is common in approximation theory to use networks with
network parameters tending to infinity

I In our analysis, we restrict all network parameters in
absolute value by one
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Statistical analysis

I we want to study the statistical performance of a deep
network

I  do nonparametric regression

I we observe n i.i.d. copies (X1,Y1), . . . , (Xn,Yn),

Yi = f (Xi ) + εi , εi ∼ N (0, 1)

I Xi ∈ Rd , Yi ∈ R,
I goal is to reconstruct the function f : Rd → R

I has been studied extensively (kernel smoothing, wavelets,
splines, . . . )
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The estimator

I denote by F(L,p, s) the class of all networks with
I architecture (L,p)
I number of active (e.g. non-zero) parameters is s

I choose network architecture (L,p) and sparsity s

I least-squares estimator

f̂n ∈ argmin
f ∈F(L,p,s)

n∑
i=1

(
Yi − f (Xi )

)2
.

I this is the global minimizer [not computable]

I prediction error

R(f̂n, f ) := Ef

[(
f̂n(X)− f (X)

)2]
,

with X
D
= X1 being independent of the sample

I study the dependence of n on R(f̂n, f )
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Function class

I classical idea: assume that regression function is β-smooth

I optimal nonparametric estimation rate is n−2β/(2β+d)

I suffers from curse of dimensionality

I to understand deep learning this setting is therefore useless

I  make a good structural assumption on f
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Hierarchical structure

I Important: Only few objects are combined on deeper
abstraction level

I few letters in one word
I few word in one sentence
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Function class

I We assume that

f = gq ◦ . . . ◦ g0

with
I gi : Rdi → Rdi+1 .
I each of the di+1 components of gi is βi -smooth and depends

only on ti variables
I ti can be much smaller than di
I we show that the rate depends on the pairs

(ti , βi ), i = 0, . . . , q.
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Example
Example: Additive models

I In an additive model

f (x) =
d∑

i=1

fi (xi )

I This can be written as f = g1 ◦ g0 with

g0(x) = (fi (xi ))i=1,...,d , g2(y) =
d∑

i=1

yi .

Hence, t0 = 1, d1 = t2 = d .
I Decomposes additive functions in

I one function that can be non-smooth but every component is
one-dimensional

I one function that has high-dimensional input but the function
is smooth
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The effective smoothness

For nonparametric regression,

f = gq ◦ . . . ◦ g0

Effective smoothness:

β∗i := βi

q∏
`=i+1

(β` ∧ 1).

β∗i is the smoothness induced on f by gi
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Main result

Theorem: If

(i) depth � log n

(ii) width � nC , with C ≥ 1

(iii) network sparsity � maxi=0,...,q n
ti

2β∗
i
+ti log n

Then,

R(f̂ , f ) . max
i=0,...,q

n
− 2β∗i

2β∗
i
+ti log2 n.
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Remarks on the rate

Rate:

R(f̂ , f ) . max
i=0,...,q

n
− 2β∗i

2β∗
i
+ti log2 n.

Remarks:

I ti can be seen as an effective dimension

I strong heuristic that this is the optimal rate (up to log2 n)

I other methods such as wavelets likely do not achieve these
rates
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Consequences

I the assumption that depth � log n appears naturally

I in particular the depth scales with the sample size

I the networks can have much more parameters than the
sample size

I important for statistical performance is not the size but
the amount of regularization

I here the number of active parameters
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Consequences (ctd.)

paradox:

I good rate for all smoothness indices

I existing piecewise linear methods only give good rates up to
smoothness two

I Here the non-linearity of the function class helps

 non-linearity is essential!!!

17 / 20



On the proof

I Oracle inequality (roughly)

R(f̂ , f ) . inf
f ∗∈F(L,p,s,F )

∥∥f ∗ − f
∥∥2
∞ +

s log n

n
.

I shows the trade-off between approximation and the number of
active parameters s

I Approximation theory:
I builds on work by Telgarsky (2016), Liang and Srikant (2016),

Yarotski (2017)
I network parameters bounded by one
I explicit bounds on network architecture and sparsity
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Additive models (ctd.)

I Consider again the additive model

f (x) =
d∑

i=1

fi (xi )

I suppose that each function fi is β-smooth

I the theorem gives the rate

R(f̂ , f ) . n−
2β

2β+1 log2 n.

I this rate is known to be optimal up to the log2 n-factor

The function class considered here contains other structural
constraints as a special case such a generalized additive models and
it can be shown that the rates are optimal up to the log2 n-factor
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Extensions

Some extensions are useful. To name a few

I high-dimensional input

I include stochastic gradient descent

I classification

I CNNs, recurrent neural networks, . . .
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