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What: density/distribution estimation

e Target distribution u
* Learn a generative model G (z) with z ~ N(0, ) to approximate

e Two examples
* Generating images
e Find a transport map from prior to posterior
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What: density/distribution estimation

e Target distribution u

* Learn a generative model G(z) with z ~ N(0,I) to
approximate u

e Two examples
* Generating images
e Find a transport map from prior to posterior
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Why we care

e Learn a latent factor model

 Dimension reduction, high-level abstractions, unsupervised learning
e Causality: “What | cannot create, | do not understand.” — Richard Feynman

This bird is completely red with black wings and pointy beak —
this small blue bird has a short omw beak and brown on its W mgs
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This bird is completely 1ed mth black wings and pointy beak —
The bird has a yellow breast with grey features and a small beak

a herd of cows an old clock next . L

, ) _ A stop sign flying in
that are grazing to a light postin the sky
on the grass front of a steeple




Why we care

e Learn a latent factor model

 Dimension reduction, high-level abstractions, unsupervised learning
e Causality: “What | cannot create, | do not understand.” — Richard Feynman

e Learn a transport map (sampling without MCMC)

e MCMC: Slow mixing rate, curse of dimensionality, correlated samples
e Uncertainty quantification, especially in high dimensional case

p(x|d) o« I(d|x) po(x)
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How to learn a generative model x = G, (2)?

min D( Gy« iz, 1)

* Gy« Uz

* Easy to sample from G, , u,

e Density function is difficult to evaluate, even does not exist (maximize likelihood )
e Case 1: only finite samples from u are available

* Easy to sample, no access to density p,

e VAEs (maximize lower bound of log likelihood), GANs (generalized moment matching)
e Analysis and applications of GANs (part 1)

* Case 2: density function p,, is available, i.e., p(x|d) o« I(d|x) py(x)
* Access to p,, difficult to sample
e Training algorithms and preliminary results (part 2)

e Conclusions



Part 1
Analysis and applications of GANs



What are Generative Adversarial Networks (GAN)?

min max B, [f(2)] = Eaevclo(f(2))]

Discrepency Measure dy, r (fim ,G)
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* ¢ = id: “distance”

i i G ted Data G (Z
e ¢ convexfunction: “divergence” enerated Data G (Z)

aussian

Are the two distributions the same?
Goodfellow et al. (2014)



Gap between theory and practice min dy r(jin, G)

AN variants | Discriminatorset | Discrepancymeasure
Wasserstein GAN {f Hf| |L’zlp g 1} Wasserstein distance -, “

Energy-based GAN {f 0 < f < C} Total variation distance
Vanilla GAN {f f < O} Jensen-Shannon divergence

..

f-gan Other non-parametric Phi-divergence

function classes

Neural GANs Neural networks fy Neural distance/divergence

Cake of non-parametric discriminator set

+*» Discrimination: When the neural distance/divergence converges to its minimum, does the learned
distribution converge to the target distribution?

*** Generalization: Given only finite number of samples, is GAN only memorizing the samples? Or it
can learn the underlying target distribution?



Discrimination of GANs with neural distance

Theorem 2.1. For any target distribution p, the neural distance is discriminative, i.e.,

dr(p.G) = 0 implies 1 = G
if and only if
span(JF) is dense in bounded continuous function space,

where span(F) is the subspace consisting of all linear combinations of functions in JF.

Under the same condition, dr (i, Gm,) — O implies that G, weakly converges to ju.

 Much weaker compared with the previous beliefs: the dlscrlmlnator
set should be dense in the original non-parametri

o Satisfied even by neural networks with a single neuron
e Nearly all neural GANs with (leaky) ReLu activations in

 GANs with neural distance are essentially doing m
discriminators

e Moment matching on F implies moment matching on




Discrimination of GANs with neural divergence

e GANs with neural divergence, e.g., neural f-GANSs, are discriminative if span
of discriminators without the last nonlinear activation is dense in the
bounded continuous function space.

sigmoid

f N Real/
Fake

convolution + max pooling VEC
nanlinearity
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comvolution + pooling layers fully connected layers binary classification

* GANs with neural divergence are doing moment matching on the feature vectors.

e Neural f-GAN and neural WGAN are doing moment matching on the same features,
and sharing the same conditions for discrimination.



Generalization of GANs min dr(jun, G)

Theorem 3.1. Assume that all discriminators are bounded by A, i.e., || f|loc < A forany f € F. Let i,
be an empirical measure of an i.i.d. sample of size m drawn from the target distribution 1. Assume G, € G
satisfies

Adr(fim, Gm) < (%Eggz{i]T(}i ,G) +e

Then with probability at least 1 — 0, we have

21og(1/0)

dr (1, Gm) < inf dr(u, G)+ RW (F +2A\/ + e
F(ﬂ.. m)_GEQ F(ﬁ 3 ) m( ) m . ,
N > s N ~ “  Optimization error
Modeling error Generalization error

where RY (F):=E [sup |% > s Tif(X5) !] is the Rademacher complexity of F.
Jer

 The generalization error is bounded independent of the hypothesis set &.
* Big difference from the supervised learning

* We also giyeg.eneralization error under other metrics, like KL divergence and
Wasserstein distance.

e Similar theorem for neural divergence.



Generalization of GANs, examples

T P S e Y R I
Wasserstein GAN {f | |f| |L?,p < 1} 0(m~1/a) 0(e™®)

MMD-GAM {f c H: ||f||H < 1} 0(m~1/2) 0(e™2) Yes
Energy-based GAN {f 0 < f < C} 0(1) 0o Yes

Vanilla GAN {f f < O} 0(1) o0 Yes

Neural GANs Neural networks fy 0(m~1/2) 0(e™?) Yes

e Our bound is tight w.r.t. the order of sample size m
 Most GANs with their original discriminator sets do not generalize.

e Several GANs in practice, like WGAN with weight clipping, already
choose their discriminator sets at the sweet point, where both the
discrimination and generalization hold.



AttnGAN — Application to text-to-image synthesis

An illustration of the proposed AttnGAN.
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In the figure, the generator tries to fool the discriminator, and tries to match the given text content.

this bird is red with
white and has a

very short beak




Results

AttnGAN significantly outperforms the previous state of the art, by boosting the best inception
score by 14.12% on the CUB dataset, and 170.25% on the COCO dataset.

For the first time, AttnGAN is able to select the condition at the word level for generating different
parts of the image.

this bird is red with white and has a very short beak
r m i

10:short  3:red | :fruit 7:kiwi 5:bananas

3:red 5:white 1:bird 10:short 0:this 0:a 5:bananas 1:fruit 7:kiwi 6:and




Diversity of the generated images

this bird has wings that are black and has a white belly

Figure 5. Example results of our AttnGAN model trained on CUB
while changing some most attended words in the text descriptions.



Utilizing t-SNE to embed a large
number of images generated by
the AttnGAN




Part 2
Deep generative models in inverse problems
Algorithm and preliminary results




Bayesian inference with transport map

* MCMC

e Slow mixing rate, curse of dimensionality, correlated samples

* Transport map
e Chorin & Tu, 2009, implicit sampling: U-shape assumption
 Moselhy & Marzouk, 2012, measure-preserving maps: polynomial basis, curse of dimensionality
* Many follow-ups and other related work

e Deep generative model as transport map

* High capacity, dimension-independent models (making use of the data structure)
e Density is not computable, maximal likelihood does not work

p(xld) e l(dX) po(x)




Training algorithm

mvén KL( Gw,* Pz » px|d)

1. Draw random {z;}%,, calculate x; = G,,(z;)

2. Compare {x;}%, with target distribution py4, do update:
X; < x; +€ev(x;)

3. Usingchain rule to uedate the generative model:

wew+ — 2 v (%) 0,6(2)

m



Toy example: 8-gaussian mixture

e Structure of the generator

( 1 ) ~ G O
ully i k p
‘ connect
l ed layer
S Identity
map

* Trained generators (iteration 0, 5e3, 1e4, 1.5e4)
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Elliptic equation

e Forward model

{—vs (exp(u())Vip(s)) = f(s), se€®
(exp(u(s))Vp(s), n(s)) =0, se&dN

V)

u: parameters to estimate, p: measurements, f: given force

Discretized on a 40*40 uniform grid

Prior of u(s): N(0,X) (a) (b)
e Noisy measurements of u

0.8

0.6

0.4

(a). Ground truth log permeability
field u(s)

(b). Pressure field p(s) and 0.2

measurement locations
0




Elliptic equation

e Structure of the generator

e U-net (Ronneberger et al, 2015) nput s >~ output
Image ol of = image
o ﬂ' 128 128

e Evolution of a random sample

512 256 |
= CONV 3x3, RelLU
copy and crop

0y
§ max pool 2x2

@ 4 up-conv 2x2
= conv 1x1

=
=]
=

512

lteration 10: u plot

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.




Challenges

e Evaluation criteria
e Accuracy in mean and variance (asymptotically unbiased)
e Sample correlation
* Mixing rate
e Sample diversity

e Generator structures
e Taking the regularity of the forward model into account



Conclusions

* We provided the necessary and sufficient conditions for GANs to be
discriminative/consistent.

 We provided a general and tight bound for the generalization error in
GAN:Ss.

 We proposed the AttnGAN for text-to-image generation task, and
outperformed previous state-of-the-art results.

* We proposed to learn a deep generative model as the transport map
from prior and posterior in Bayesian inverse problems.

 We showed our preliminary results, and pointed out challenges we
met.



QnA
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