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What: density/distribution estimation
• Target distribution 𝜇𝜇
• Learn a generative model 𝐺𝐺(𝑧𝑧) with 𝑧𝑧 ∼ 𝑁𝑁 0, 𝐼𝐼 to approximate µ
• Two examples

• Generating images
• Find a transport map from prior to posterior
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• Two examples

• Generating images
• Find a transport map from prior to posterior

𝑝𝑝 𝑥𝑥 𝑑𝑑 ∝ 𝑙𝑙 𝑑𝑑 𝑥𝑥 𝑝𝑝0(𝑥𝑥)

𝑝𝑝𝑥𝑥|𝑑𝑑 ≈ 𝐺𝐺∗ 𝑝𝑝0



Why we care
• Learn a latent factor model 

• Dimension reduction, high-level abstractions, unsupervised learning
• Causality: “What I cannot create, I do not understand.” – Richard Feynman

a herd of cows 
that are grazing 
on the grass

A stop sign flying in 
the sky

an old clock next 
to a light post in 
front of a steeple



Why we care
• Learn a latent factor model 

• Dimension reduction, high-level abstractions, unsupervised learning
• Causality: “What I cannot create, I do not understand.” – Richard Feynman

• Learn a transport map (sampling without MCMC)
• MCMC: Slow mixing rate, curse of dimensionality, correlated samples
• Uncertainty quantification, especially in high dimensional case

𝑝𝑝 𝑥𝑥 𝑑𝑑 ∝ 𝑙𝑙 𝑑𝑑 𝑥𝑥 𝑝𝑝0(𝑥𝑥)

𝑝𝑝𝑥𝑥|𝑑𝑑 ≈ 𝐺𝐺∗ 𝑝𝑝0



How to learn a generative model 𝑥𝑥 = 𝐺𝐺𝑤𝑤(𝑧𝑧)?

• 𝐺𝐺𝑤𝑤,∗ 𝜇𝜇𝑧𝑧
• Easy to sample from 𝐺𝐺𝑤𝑤,∗ 𝜇𝜇𝑧𝑧
• Density function is difficult to evaluate, even does not exist (maximize likelihood )

• Case 1: only finite samples from 𝜇𝜇 are available
• Easy to sample, no access to density 𝜌𝜌𝜇𝜇
• VAEs (maximize lower bound of log likelihood), GANs (generalized moment matching)
• Analysis and applications of GANs (part 1)

• Case 2: density function 𝜌𝜌𝜇𝜇 is available, i.e., 𝑝𝑝 𝑥𝑥 𝑑𝑑 ∝ 𝑙𝑙 𝑑𝑑 𝑥𝑥 𝑝𝑝0(𝑥𝑥)
• Access to 𝜌𝜌𝜇𝜇, difficult to sample
• Training algorithms and preliminary results (part 2)

• Conclusions

min
𝑤𝑤

𝐷𝐷( 𝐺𝐺𝑤𝑤,∗ 𝜇𝜇𝑧𝑧 ,𝜇𝜇)



Part 1
Analysis and applications of GANs



𝑓𝑓𝜃𝜃

What are Generative Adversarial Networks (GAN)? 

Are the two distributions the same?
Goodfellow et al. (2014)

• 𝜙𝜙 = 𝑖𝑖𝑑𝑑: “distance”
• 𝜙𝜙 convex function: “divergence”



Gap between theory and practice

GAN variants Discriminator set Discrepancy measure

Wasserstein GAN Wasserstein distance

Energy-based GAN Total variation distance

Vanilla GAN Jensen-Shannon divergence

f-gan Other non-parametric 
function classes

Phi-divergence

Neural GANs Neural networks 𝑓𝑓𝜃𝜃 Neural distance/divergence

 Discrimination: When the neural distance/divergence converges to its minimum, does the learned 
distribution converge to the target distribution?

 Generalization:  Given only finite number of samples, is GAN only memorizing the samples? Or it 
can learn the underlying target distribution?

Cake of non-parametric discriminator set



Discrimination of GANs with neural distance

• Much weaker compared with the previous beliefs: the discriminator 
set should be dense in the original non-parametric function class. 

• Satisfied even by neural networks with a single neuron. 
• Nearly all neural GANs with (leaky) ReLu activations in the discriminator.

• GANs with neural distance are essentially doing moment matching on 
discriminators 

• Moment matching on 𝐹𝐹 implies moment matching on span(𝐹𝐹)



Discrimination of GANs with neural divergence
• GANs with neural divergence, e.g., neural f-GANs, are discriminative if span 

of discriminators without the last nonlinear activation is dense in the 
bounded continuous function space.

• GANs with neural divergence are doing moment matching on the feature vectors. 
• Neural f-GAN and neural WGAN are doing moment matching on the same features, 

and sharing the same conditions for discrimination. 



Generalization of GANs

• The generalization error is bounded independent of the hypothesis set G.
• Big difference from the supervised learning

• We also give generalization error under other metrics, like KL divergence and 
Wasserstein distance.

• Similar theorem for neural divergence. 



Generalization of GANs, examples

GAN variants Discriminator set Generalization error Sample size Tight or not

Wasserstein GAN 𝑂𝑂(𝑚𝑚−1/𝑑𝑑) 𝑂𝑂(𝜖𝜖−𝑑𝑑) Yes

MMD-GAM 𝑂𝑂(𝑚𝑚−1/2) 𝑂𝑂(𝜖𝜖−2) Yes

Energy-based GAN 𝑂𝑂(1) ∞ Yes

Vanilla GAN 𝑂𝑂(1) ∞ Yes

Neural GANs Neural networks 𝑓𝑓𝜃𝜃 𝑂𝑂(𝑚𝑚−1/2) 𝑂𝑂(𝜖𝜖−2) Yes

• Our bound is tight w.r.t. the order of sample size 𝑚𝑚
• Most GANs with their original discriminator sets do not generalize. 
• Several GANs in practice, like WGAN with weight clipping, already 

choose their discriminator sets at the sweet point, where both the 
discrimination and generalization hold.



AttnGAN – Application to text-to-image synthesis
An illustration of the proposed AttnGAN. 

In the figure, the generator tries to fool the discriminator, and tries to match the given text content. 



Results
• AttnGAN significantly outperforms the previous state of the art, by boosting the best inception 

score by 14.12% on the CUB dataset, and 170.25% on the COCO dataset. 
• For the first time, AttnGAN is able to select the condition at the word level for generating different 

parts of the image. 



Diversity of the generated images



Utilizing t-SNE to embed a large 
number of images generated by 
the AttnGAN



Part 2
Deep generative models in inverse problems
Algorithm and preliminary results



Bayesian inference with transport map
• MCMC

• Slow mixing rate, curse of dimensionality, correlated samples
• Transport map

• Chorin & Tu, 2009, implicit sampling: U-shape assumption
• Moselhy & Marzouk, 2012, measure-preserving maps: polynomial basis, curse of dimensionality 
• Many follow-ups and other related work

• Deep generative model as transport map
• High capacity, dimension-independent models (making use of the data structure)
• Density is not computable, maximal likelihood does not work

𝑝𝑝 𝑥𝑥 𝑑𝑑 ∝ 𝑙𝑙 𝑑𝑑 𝑥𝑥 𝑝𝑝0(𝑥𝑥)

𝑝𝑝𝑥𝑥|𝑑𝑑 ≈ 𝐺𝐺∗ 𝑝𝑝0



Training algorithm

min
𝑤𝑤

𝐾𝐾𝐾𝐾( 𝐺𝐺𝑤𝑤,∗ 𝜌𝜌𝑧𝑧 , 𝑝𝑝𝑥𝑥|𝑑𝑑 )

1. Draw random {𝑧𝑧𝑖𝑖}𝑖𝑖=1𝑚𝑚 , calculate 𝑥𝑥𝑖𝑖 = 𝐺𝐺𝑤𝑤 𝑧𝑧𝑖𝑖
2. Compare {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑚𝑚 with target distribution 𝑝𝑝𝑥𝑥|𝑑𝑑, do update: 

𝑥𝑥𝑖𝑖 ← 𝑥𝑥𝑖𝑖 + 𝜖𝜖 𝑣𝑣∗(𝑥𝑥𝑖𝑖)
3. Using chain rule to update the generative model:

𝑤𝑤 ← 𝑤𝑤 + 𝜖𝜖
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑣𝑣∗ 𝑥𝑥𝑖𝑖 𝜕𝜕𝑤𝑤𝐺𝐺(𝑧𝑧𝑖𝑖)



Toy example: 8-gaussian mixture

𝑝𝑝𝑥𝑥|𝑑𝑑
≈ 𝐺𝐺∗ 𝑝𝑝0

• Structure of the generator

• Trained generators (iteration 0, 5e3, 1e4, 1.5e4)



Elliptic equation
• Forward model

• u: parameters to estimate, p: measurements, f: given force
• Discretized on a 40*40 uniform grid
• Prior of u(s): 𝑁𝑁(0,Σ)
• Noisy measurements of 𝑢𝑢

(a). Ground truth log permeability 
field u(s)

(b). Pressure field p(s) and 
measurement locations



Elliptic equation

• Structure of the generator
• U-net (Ronneberger et al, 2015)  

• Evolution of  a random sample



Challenges

• Evaluation criteria
• Accuracy in mean and variance (asymptotically unbiased)
• Sample correlation
• Mixing rate
• Sample diversity 

• Generator structures
• Taking the regularity of the forward model into account



Conclusions

• We provided the necessary and sufficient conditions for GANs to be 
discriminative/consistent.

• We provided a general and tight bound for the generalization error in 
GANs.

• We proposed the AttnGAN for text-to-image generation task, and 
outperformed previous state-of-the-art results.

• We proposed to learn a deep generative model as the transport map 
from prior and posterior in Bayesian inverse problems.

• We showed our preliminary results, and pointed out challenges we 
met.



QnA
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